Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-28T13:26:02.021Z Has data issue: false hasContentIssue false

Lefschetz formulae for modest vector bundles

Published online by Cambridge University Press:  24 October 2008

K. H. Mayer
Affiliation:
University of Dortmund and University of Warwick
R. L. E. Schwarzenberger
Affiliation:
University of Dortmund and University of Warwick

Extract

A number of results are known which relate the characteristic numbers on a differentiable manifold X to the differentiable actions of the circle group S1on X. Many of these results are consequences of the Atiyah–Singer index theorem (2). In particular, an idea due to Hirzebruch sometimes permits one to deduce that certain characters which occur in the index theorem are in fact constant. Examples of this procedure can be found on page 594 of(2), on page 46 of(4), and on pages 21–22 of(1). Our aim in this paper is to make a systematic investigation of such results, and it is this aim which led us naturally to the concept of a modest vector bundle.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Atiyah, M. F. and Hirzebruch, F. Spin-manifolds and group actions. In Essays on topology and related topics (Berlin, Heidelberg, New York, Springer-Verlag, 1970, pp. 1828).CrossRefGoogle Scholar
(2)Atiyah, M. F. and Singer, I. M.The index of elliptic operators: III. Ann. of Math. 87 (1968), 546604.Google Scholar
(3)Hirzebruch, F.Topological methods in algebraic geometry (Berlin, Heidelberg, New York, Springer-Verlag, 1966).Google Scholar
(4)Kosniowski, C.Applications of the holomorphic Lefschetz formula. Bull. London Math. Soc. 2 (1970), 4348.Google Scholar
(5)Mayer, K. H.Elliptische Differentialoperatoren und Ganszahligkeitssätze für charak teristisohe Zahlen. Topology 4 (1965), 295313.CrossRefGoogle Scholar
(6)Mayer, K. H.Free S1-actions and involutions on homotopy seven spheres. Proc. Cambridge Philos. Soc. 73 (1973), 455458.Google Scholar
(7)Mayer, K. H. and Scrwarzenberger, R. L. E.Non-embedding theorems for Y-spaces. Proc. Cambridge Philos. Soc. 63 (1967), 601612.Google Scholar
(8)Schwarz, W. Spezielle G-äquivariante elliptische Differentialoperatoren, ein Charaktersatz und Anwendungen. Thesis, Bonn, 1972.Google Scholar
(9)Su, J. C.Transformation groups on cohomology projeetive spaces. Trans. Amer. Math. Soc. 106 (1963), 305318.CrossRefGoogle Scholar