Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T07:49:12.272Z Has data issue: false hasContentIssue false

Large Selmer groups over number fields

Published online by Cambridge University Press:  15 July 2009

ALEX BARTEL*
Affiliation:
Department of Pure Mathematics and Mathematical Statistics, Centre for Mathematical Sciences, University of Cambridge, Wilber force Road, Cambridge, CB3 0WB. e-mail: [email protected]

Abstract

Let p be a prime number and M a quadratic number field, M ≠ ℚ() if p ≡ 1 mod 4. We will prove that for any positive integer d there exists a Galois extension F/ℚ with Galois group D2p and an elliptic curve E/ℚ such that F contains M and the p-Selmer group of E/F has size at least pd.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Cassels, J. W. S.Arithmetic on curves of genus 1 (vi). The Tate–Šafarevič group can be arbitrarily large. J. Reine Angew. Math. 214/215 (1964), 6570.CrossRefGoogle Scholar
[2]Clark, P.The period-index problem in WC-groups i: elliptic curves. J. Number Theory. 114 (1) (2005), 193208.CrossRefGoogle Scholar
[3]Clark, P. L. and Sharif, S. Period, index and potential sha. arXiv:0811.3019v1 (2008).Google Scholar
[4]Cohen, H.Advanced Topics in Computational Number Theory. GTM 193 (Springer-Verlag, 2000).CrossRefGoogle Scholar
[5]Curtis, C. and Reiner, I.Methods of Representation Theory with Applications to Finite Groups and Orders, volume II (John Wiley and Sons, 1987).Google Scholar
[6]Dokchitser, T. and Dokchitser, V. On the Birch–Swinnerton–Dyer quotients modulo squares. arXiv:math/0610290v3. To appear in Annals of Math. (2007).Google Scholar
[7]Dokchitser, T. and Dokchitser, V. Regulator constants and the parity conjecture. arXiv:0709.2852v3. To appear in Invent. Math. (2007).Google Scholar
[8]Fisher, T.Some examples of 5 and 7 decent for elliptic curves over ℚ. J. Eur. Math. Soc. 3 (2001), 169201.CrossRefGoogle Scholar
[9]Kloosterman, R.The p-part of the Tate–Shafarevich groups of elliptic curves can be arbitrarily large. Journal de Theorie des Nombres de Bordeaux 17 (2005), 787800.Google Scholar
[10]Kloosterman, R. and Schaefer, E.Selmer groups of elliptic curves that can be arbitrarily large. J. Number Theory 99 (2003), 148163.CrossRefGoogle Scholar
[11]Kramer, K.A family of semistable elliptic curves with large Tate–Shafarevitch groups. Proc. Amer. Math. Soc. 89 (1983), 379386.CrossRefGoogle Scholar
[12]Matsuno, K. Elliptic curves with large Tate–Shafarevich groups over a number field. To appear in Math. Res. Lett.Google Scholar
[13]Matsuno, K.Construction of elliptic curves with large Iwasawa λ-invariants and large Tate–Shafarevich groups. Manuscripta Math. 122 (3) (2007), 289304.CrossRefGoogle Scholar
[14]Mazur, B.Modular curves and the Eisenstein ideal. Inst. Hautes Etudes Sci. Publ. Math. 47 (1977), 33186.CrossRefGoogle Scholar
[15]Mazur, B.Rational isogenies of prime degree. Invent. Math. 44 (1978), 129162.CrossRefGoogle Scholar
[16]Milne, J. S.On the arithmetic of abelian varieties. Invent. Math. 17 (1972), 177190.CrossRefGoogle Scholar
[17]Milne, J. S.Arithmetic Duality Theorems. Number 1 in Perspectives in Mathematics. (Academic Press, 1986).Google Scholar
[18]Serre, J.-P.Propriétés galoisiennes des points d'ordre fini des courbes elliptiques. Invent. Math. 15 (1972), 259331.CrossRefGoogle Scholar
[19]Silverman, J. H.The Arithmetic of Elliptic Curves. GTM 106 (Springer Verlag, 1985).Google Scholar
[20]Silverman, J. H.Advanced Topics in the Arithmetic of Elliptic Curves. GTM 151 (Springer-Verlag, 1994).CrossRefGoogle Scholar
[21]Tate, J. On the conjecture of Birch and Swinnerton–Dyer and a geometric analog. Séminaire Bourbaki 18e année (no. 306) (1965/66).Google Scholar
[22]Zassenhaus, H.Neuer Beweis der Endlichkeit der Klassenzahl bei unimodularer Äquivalenz endlicher ganzzahliger Substitutionsgruppen. Hamb. Abh. 12 (1938), 276288.CrossRefGoogle Scholar