Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Berens, Hubert
and
zu Castell, Wolfgang
1998.
Hypergeometric functions as a tool for summability of the Fourier integral.
Results in Mathematics,
Vol. 34,
Issue. 1-2,
p.
69.
Li, Zhongkai
and
Xu, Yuan
2000.
Summability of Product Jacobi Expansions.
Journal of Approximation Theory,
Vol. 104,
Issue. 2,
p.
287.
Li, Zhong Kai
2000.
Proceedings of the Second ISAAC Congress.
Vol. 7,
Issue. ,
p.
31.
zu Castell, Wolfgang
2000.
On a Theorem of T. Gneiting on α-Symmetric Multivariate Characteristic Functions.
Journal of Multivariate Analysis,
Vol. 75,
Issue. 2,
p.
269.
Zastavnyi, Victor P
2000.
On Positive Definiteness of Some Functions.
Journal of Multivariate Analysis,
Vol. 73,
Issue. 1,
p.
55.
Xu, Yuan
2001.
Orthogonal polynomials and cubature formulae on balls, simplices, and spheres.
Journal of Computational and Applied Mathematics,
Vol. 127,
Issue. 1-2,
p.
349.
Gneiting, Tilmann
2001.
Criteria of Pólya type for radial positive definite functions.
Proceedings of the American Mathematical Society,
Vol. 129,
Issue. 8,
p.
2309.
Berens, Hubert
Li, Zhongkai
and
Xu, Yuan
2001.
On l-1 riesz summability of the inverse Fourier integral.
Indagationes Mathematicae,
Vol. 12,
Issue. 1,
p.
41.
Castell, Wolfgang Zu
2002.
Dirichlet Splines as Fractional Integrals of $B$-Splines.
Rocky Mountain Journal of Mathematics,
Vol. 32,
Issue. 2,
zu Castell, Wolfgang
2002.
Recurrence relations for radial positive definite functions.
Journal of Mathematical Analysis and Applications,
Vol. 271,
Issue. 1,
p.
108.
Fotopoulos, Stergios B
2004.
Tempered distributions and their application in computing conditional moments for normal mixtures.
Statistics & Probability Letters,
Vol. 67,
Issue. 3,
p.
257.
Castell, Wolfgang Zu
2004.
Fractional derivatives and the inverse Fourier transform of ℓ1-radial functions.
Integral Transforms and Special Functions,
Vol. 15,
Issue. 3,
p.
209.
Berdysheva, Elena E.
and
Berens, Hubert
2005.
Über ein Turánsches Problem für ℓ-1 radiale, positiv definite Funktionen.
Results in Mathematics,
Vol. 47,
Issue. 1-2,
p.
17.
Feichtinger, Hans G.
and
Weisz, Ferenc
2006.
The Segal Algebra ${\bf S}_0({\Bbb R}^d)$ and Norm Summability of Fourier Series and Fourier Transforms.
Monatshefte für Mathematik,
Vol. 148,
Issue. 4,
p.
333.
WEISZ, FERENC
2008.
Wiener amalgams, Hardy spaces and summability of Fourier series.
Mathematical Proceedings of the Cambridge Philosophical Society,
Vol. 145,
Issue. 2,
p.
419.
Berdysheva, Elena E.
and
Berens, Hubert
2009.
Über ein Turánsches problem für ℓ-1 radiale, positiv definite Funktionen, II.
Journal of Approximation Theory,
Vol. 160,
Issue. 1-2,
p.
71.
Weisz, Ferenc
2011.
ℓ 1-Summability of d-Dimensional Fourier Transforms.
Constructive Approximation,
Vol. 34,
Issue. 3,
p.
421.
Liflyand, E.
Samko, S.
and
Trigub, R.
2012.
The Wiener algebra of absolutely convergent Fourier integrals: an overview.
Analysis and Mathematical Physics,
Vol. 2,
Issue. 1,
p.
1.
Weisz, Ferenc
2012.
Triangular summability of two-dimensional Fourier transforms.
Analysis Mathematica,
Vol. 38,
Issue. 1,
p.
65.
Weisz, Ferenc
2013.
Weak type inequalities for the ℓ 1-summability of higher dimensional Fourier transforms.
Analysis Mathematica,
Vol. 39,
Issue. 4,
p.
297.