Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-05T01:10:16.267Z Has data issue: false hasContentIssue false

Kolmogorov's differential equations for non-stationary, countable state Markov processes with uniformly continuous transition probabilities

Published online by Cambridge University Press:  24 October 2008

Gerald S. Goodman
Affiliation:
Institute of Mathematics, University of Florence
S. Johansen
Affiliation:
Department of Mathematics, Imperial College and Institute of Mathematical Statistics, University of Copenhagen

1. summary

We shall consider a non-stationary Markov chain on a countable state space E. The transition probabilities {P(s, t), 0 ≤ st <t0 ≤ ∞} are assumed to be continuous in (s, t) uniformly in the state i ε E.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Austin, D. G.Some differentiability properties of Markoff transition probability functions. Proc. Amer. Math. Soc. 7 (1956), 756761.Google Scholar
(2)Austin, D. G.Note on differentiating Markoff transition functions with stable terminal states. Duke Math. J. 25 (1958), 625629.CrossRefGoogle Scholar
(3)Doeblin, W.Sur certains mouvements aléatoires discontinus. Skand. Aktuarietidskr. 22 (1939), 211222.Google Scholar
(4)Feller, W.On the integro-differential equations of purely discontinuous processes. Trans. Amer. Math. Soc. 48 (1940), 488515.CrossRefGoogle Scholar
(5)Gikhman, I. I. and Skorokhod, A. V.Introduction to the theory of random processes (London; W. B. Saunders, 1969).Google Scholar
(6)Goodman, G. S.An intrinsic time for non-stationary finite Markov chains. Z. Wahrschein-lichkeitstheorie und Verw. Gebiete, 16 (1970), 165180.Google Scholar
(7)Jacobsen, M.Characterization of minimal Markov jump processes. Z. Wahrscheinlichkeits-theorie und Verw. Gebiete 23 (1972), 3246.CrossRefGoogle Scholar
(8)Lundberg, O.On random processes and their application to sickness and accident statistics (Uppsala; Almqvist and Wiksell, 1940).Google Scholar
(9)Meyer, P. A.Probability and potentials (Waltham, Mass.; Blaisdell, 1966).Google Scholar
(10)Nelson, E.Regular probability measures on function space. Ann. of Math. 69 (1959), 630643.CrossRefGoogle Scholar