Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T07:37:09.410Z Has data issue: false hasContentIssue false

K3 of truncated polynomial rings over fields of characteristic two

Published online by Cambridge University Press:  24 October 2008

Janet Aisbett
Affiliation:
Electronic Research Laboratory, D.S.T.O., Adelaide, S.A. 5001, Australia
Victor Snaith
Affiliation:
Department of Mathematics, University of Western Ontario, London, Ontario N6A 5B7, Canada

Extract

Write F for the finite field, , having 2m elements. Let W2(F) denote the Witt vectors of length two over F (for a definition, see [4] or [10], §10). Write F(q) for the truncated polynomial ring, F[t]/(tq).

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Aisbett, J.. On K 3 of truncated polynomial rings, to appear in Trans. Amer. Math. Soc.Google Scholar
[2]Aisbett, J., Lluis-Puebla, E. and Snaith, V.. On K 3 of q[t]/(t 2) and q[t]/(t 3). J. Algebra 101 (1986), 6981.CrossRefGoogle Scholar
[3]Cartan, H. and Eilenberg, S.. Homological Algebra (Princeton University Press, 1956).Google Scholar
[4]Dennis, K. and Stein, M.. K 2 of discrete valuation rings. Advances in Math. 18 (1975), 182238.CrossRefGoogle Scholar
[5]Dwyer, W. G.. Twisted homological stability for general linear groups. Ann. of Math. (2) 111 (1980), 239252.CrossRefGoogle Scholar
[6]Hilton, P. J. and Stammbach, U.. A Course in Homological Algebra. Graduate Texts in Math. no. 4 (Springer-Verlag, 1971).CrossRefGoogle Scholar
[7]Kassel, C.. K-théorie relative d'un idéal bilatère de carré nul; étude homologique en basse dimension. In Algebraic K-Theory (Evanston 1980), Lecture Notes in Mathematics, vol. 854 (Springer-Verlag, 1981), 249261.Google Scholar
[8]Lluis-Puebla, E.. On K 3{pl[t]/(t 2) and K 3(ℤ/p), p an odd prime, in On K *(Z/n) and K *[q[t 2)). Mem- Amer. Math. Soc. 329 (1985).Google Scholar
[9]Lluis-Puebla, E. and Snaith, V.. Determination of K 3{pl[t]/(t 2) for prime p ≥ 5. Canad. Math. Soc. Conf. Proc., vol. 2, part 1 (1982), 2935.Google Scholar
[10]Snaith, V.. On K 3 of dual numbers, in On K *(Z/n) and K *(q[t]/(t 2)). Mem. Amer. Math. Soc. 329 (1985).Google Scholar
[11]Stienstra, J.. On K 2 and K 3 of truncated polynomial rings. In Algebraic K-theory (Evanston 1980), Lecture Notes in Mathematics, vol. 854 (Springer-Verlag, 1981), 409455.Google Scholar
[12]van der Kallen, W. and Stienstra, J.. The relative K 2 of truncated polynomial rings. J. Pure and Applied Algebra 34 (1984), 277290.CrossRefGoogle Scholar
[13]Weibel, C.. Module structures on the K-theory of graded rings, preprint (1984).Google Scholar