Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T08:58:13.313Z Has data issue: false hasContentIssue false

JV-algebras

Published online by Cambridge University Press:  24 October 2008

J. Martinez Moreno
Affiliation:
University of Granada

Extract

Let J be a complex Banach space and a complex Jordan algebra equipped with an algebra involution *. Then J is a Jordan C*-algebra if the following conditions are satisfied:

(Ua is defined on page 3).

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Bonsall, F. F. and Duncan, J.Complete normed algebras (Berlin, Heidelberg, New York, Springer-Verlag, 1973).CrossRefGoogle Scholar
(2)Jacobson, N. Structure and representation of Jordan algebras. Amer. Math. Soc. Coll. Publ. no. 39. Providence 1908.Google Scholar
(3)Kleinecke, D. C.On operator commutators. Proc. Amer. Math. Soc. 8 (1957), 535536.CrossRefGoogle Scholar
(4)Martinez, J. Sobre algebras de Jordan normadas completas. Tesis doctoral, Universidad de Granada, Secretariado de Publicaciones (1977).Google Scholar
(5)Rodriguez, A. A Vidav-Palmer theorem for Jordan C*-algebras and related topics. (Preprint.)Google Scholar
(6)Youngson, M. A.A Vidav theorem for Banach Jordan algebras. Math. Proc. Cambridge Philos. Soc. 84, (1978), 263272.CrossRefGoogle Scholar
(7)Youngson, M. A. Hermitian operators on Banach Jordan algebras. (Preprint.)Google Scholar