Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T18:53:01.086Z Has data issue: false hasContentIssue false

Isomorphisms of H*-algebras

Published online by Cambridge University Press:  24 October 2008

Jose Antonio Cuenca Mira
Affiliation:
Departamento de Algebra y Fundamentos, Universidad de Málaga, Spain
Angel Rodriguez Palacios
Affiliation:
Departamento de Teoría de Funciones, Universidad de Granada, Spain

Extract

H*-algebras were introduced and studied by Ambrose [1] in the associative case, and the theory has been extended to such particular classes of non-associative algebras as Lie [18, 19], Jordan[20, 21, 7], alternative [11] and non-commutative Jordan [6] algebras. In all these cases the core of the matter is showing that every H*-algebra (in the given class) with zero annihilator is the closure of the orthogonal sum of its minimal closed ideals (each of which is a topologically simple H*-algebra), and then listing all the topologically simple H*-algebras in the class. In fact every nonassociative H*-algebra with zero annihilator is the closure of the orthogonal sum of its minimal closed ideals [6, theorem 2·7], so the problem of the classification of topologically simple non-associative H*-algebras becomes interesting. In relation with this problem the question arises whether, once an algebra A has been structured as a topologically simple H*-algebra, every H*-algebra structure on A is (up to a positive multiple of the inner product) totally isomorphic to the given one (see [3] and [11, section 4]). As a consequence of the results in this paper we give a general affirmative answer to this question.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Ambrose, W.. Structure theorems for a special class of Banach algebras. Trans. Amer. Math. Soc. 57 (1945), 364386.CrossRefGoogle Scholar
[2]Aparicio, C. and Rodriguez, A.. Sobre el espectro de derivaciones y automorfismos de las algebras de Banach. Rev. Real Acad. Cienc. Exactas. Fisicas y Naturales de Madrid (in the Press).Google Scholar
[3]Balachandran, V. K.. Automorphisms of L*-algebras. Tôhoku Math. J. 22 (1970), 163173.CrossRefGoogle Scholar
[4]Bonsall, F. F. and Duncan, J.. Complete Normed Algebras (Springer-Verlag, 1973).CrossRefGoogle Scholar
[5]Cuenca, J. A.. Sobre H*-álgebras no asociativas. Teoría de estructura de las H*-álgebras de Jordan no conmutativas semisimples. Tesis Doctoral, Universidad de Granada, 1982.Google Scholar
[6]Cuenca, J. A. and Rodriguez, A.. Structure theory for noncommutative Jordan H*-algebras. J. Algebra (in the Press).Google Scholar
[7]Cuenca, J. A. and Rodriguez, A.. Coordinatization and structure in Jordan H*-algebras. Preprint, Universidad de Granada, 1984.Google Scholar
[8]Dixmier, J.. Les algebres d'opérateurs dans l'espace hilbertien (Gauthier-Villars, 1969).Google Scholar
[9]Naimark, M. A.. Normed Algebras (Wolters-Noordhoff, 1972).Google Scholar
[10]Paya, R., Perez, J. and Rodriguez, A.. Noncommutative Jordan C*-algebras. Manuscripta Math. 37 (1982), 87120.CrossRefGoogle Scholar
[11]Perez, I.Guzman, de. Structure theorems for alternative H*-algebras. Math. Proc. Cambridge Philos. Soc. 94 (1983), 437446.Google Scholar
[12]Rickart, C. E.. General Theory of Banach Algebras (Van Nostrand, 1960).Google Scholar
[13]Rodriguez, A.. Contribuci6n a la teoria de las C*-álgebras con unidad. Tesis Doctoral, Secretariado de Publicaciones de la Universidad de Granada, 1974.Google Scholar
[14]Rodriguez, A.. Teorema de estructura de los Jordan-isomorfismos de las C*-álgebras. Rev. Mat. Hisp.-Amer. (4) 37 (1977), 114128.Google Scholar
[15]Rodriguez, A.. Nonassociative normed algebras spanned by hermitian elements. Proc. London Math. Soc. (3) 47 (1983), 258274.Google Scholar
[16]Rodriguez, A.. The uniqueness of the complete norm topology in complete normed non-associative algebras. J. Functional Analysis, in the Press.Google Scholar
[17]Sakai, S.. C*-algebras and W*-algebras (Springer-Verlag, 1971).Google Scholar
[18]Schue, J. R.. Hilbert space methods in the theory of Lie algebras. Trans. Amer. Math. Soc. 95 (1960), 6980.CrossRefGoogle Scholar
[19]Schue, J. R.. Cartan decomposition for L*-algebras. Trans. Amer. Math. Soc. 98 (1961), 334349.Google Scholar
[20]Devapakkiam, C. Viola. Hilbert space methods in the theory of Jordan algebras. Math. Proc. Cambridge Philos. Soc. 78 (1975), 293300.CrossRefGoogle Scholar
[21]Devapakkiam, C. Viola and Rema, P. S.. Hilbert space methods in the theory of Jordan algebras: II. Math. Proc. Cambridge Philos. Soc. 79 (1976), 307319.CrossRefGoogle Scholar