No CrossRef data available.
Inversion of a class of transforms with a difference kernel
Published online by Cambridge University Press: 24 October 2008
Extract
1. Recently Ta li(10) Buschman(2, 3), Erdelyi(4) and Shrivastava(8, 9) obtained solutions of integral equations involving polynomial kernels in the range of integration x to 1. Widder(12) obtained an inversion of a convolution transform with a Laguerre polynomial as kernel.
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 65 , Issue 3 , May 1969 , pp. 673 - 677
- Copyright
- Copyright © Cambridge Philosophical Society 1969
References
REFERENCES
(1)Bateman, H.Partial differential equations of mathematical physics (Cambridge, 1932).Google Scholar
(2)Buschman, R. G.An inversion integral for a Legendre transformation. Amer. Math. Monthly 69 (1962), 288–289.CrossRefGoogle Scholar
(3)Buschman, R. G.An inversion integral. Proc. Amer. Math. Soc. 13 (1962), 675–677.CrossRefGoogle Scholar
(4)Erdélyi, A.An integral equation involving Legendre's polynomial. Amer. Math. Monthly 70 (1963), 651–652.CrossRefGoogle Scholar
(7)Hopf, E.Mathematical problems of radiative equilibrium. Cambridge Tracts no. 31 (1933).Google Scholar
(8)Shrivastava, K. N.A class of integral equations involving ultraspherical polynomials as kernel. Proc. Amer. Math. Soc. 14 (1963), 932–940.CrossRefGoogle Scholar
(9)Shrivastava, K. N.Inversion integrals involving Jacobi's polynomials. Proc. Amer. Math. Soc. 15 (1964), 635–638.Google Scholar
(10)Ta, li. A new class of integral transforms. Proc. Amer. Math. Soc. 11 (1956), 290–298.Google Scholar
(12)Widder, D. V.The convolution transform whose kernel is a Laguerre polynomial. Amer. Math. Monthly 70 (1963), 291–93.CrossRefGoogle Scholar