Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T07:32:51.406Z Has data issue: false hasContentIssue false

Integral modular forms and summation formulae

Published online by Cambridge University Press:  24 October 2008

A. P. Guinand
Affiliation:
New CollegeOxford

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Notes
Copyright
Copyright © Cambridge Philosophical Society 1947

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

* Guinand, A. P., Quart J. Math. 9 (1938), 5367CrossRefGoogle Scholar, Theorem 2 with R 0(x) = 0. A(1 − s) should be substituted for A(s) in the formula (4·1).

Rankin, R. A., Proc. Cambridge Phil. Soc. 36 (1940), 150–1.CrossRefGoogle Scholar

Wilton, J. R., Proc. Cambridge Phil. Soc. 25 (1928), 121–9.CrossRefGoogle Scholar

* Titchmarsh, E. C., Fourier Integrals (Oxford, 1937), 196.Google Scholar

Guinand, A. P., Annals of Math. 42 (1941), 591603CrossRefGoogle Scholar, Lemma 4. The present lemma is proved in the same way. We use the notation

Loc. cit.

* A. P. Guinand, Quart. J. Math. loc. cit. Theorem 1. The dashes indicate that the terms n = x are to be halved if x is an integer.

See E. C. Titchmarsh, loc. cit. pp. 265–7, where the method is applied to a similar problem.

Hardy, G. H., Proc. Cambridge Phil. Soc. 34 (1938), 309–15.CrossRefGoogle Scholar

§ Walfisz, A., Math. Ann. 108 (1933), 7590.CrossRefGoogle Scholar