No CrossRef data available.
Article contents
Hilbert polynomials of j-transforms
Published online by Cambridge University Press: 02 May 2016
Abstract
We study transformations of finite modules over Noetherian local rings that attach to a module M a graded module H(x)(M) defined via partial systems of parameters x of M. Despite the generality of the process, which are called j-transforms, in numerous cases they have interesting cohomological properties. We focus on deriving the Hilbert functions of j-transforms and studying the significance of the vanishing of some of its coefficients.
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 161 , Issue 2 , September 2016 , pp. 305 - 337
- Copyright
- Copyright © Cambridge Philosophical Society 2016
References
REFERENCES
[1]
Achilles, R. and Manaresi, M.
Multiplicity for ideals of maximal analytic spread and intersection theory, J. Math. Kyoto Univ.
33 (1993), 1029–1046.Google Scholar
[2]
Brodmann, M.
Local cohomology of certain Rees and form rings, I. J. Algebra
81 (1983), 29–57.Google Scholar
[3]
Ciuperca, C.
A numerical characterization of the S
2-ification of a Rees algebra, J. Pure Appl. Algebra
173 (2003), 25–48.Google Scholar
[4]
Flenner, H. and Manaresi, M.
A numerical characterization of reduction ideals. Math. Zeit.
238 (2001), 205–214.Google Scholar
[5]
Ghezzi, L., Goto, S., Hong, J., Ozeki, K., Phuong, T.T. and Vasconcelos, W. V.
Cohen–Macaulayness versus the vanishing of the first Hilbert coefficient of parameter ideals. J. London Math. Soc.
81 (2010), 679–695.Google Scholar
[6]
Ghezzi, L., Goto, S., Hong, J., Ozeki, K., Phuong, T.T. and Vasconcelos, W. V. The Chern and Euler coefficients of modules, Submitted.Google Scholar
[7]
Ghezzi, L., Hong, J. and Vasconcelos, W. V.
The signature of the Chern coefficients of local rings. Math. Res. Lett.
16 (2009), 279–289.Google Scholar
[8]
Goto, S.
Buchsbaum local rings with maximal embedding dimension. J. Algebra
76 (1982), 383–399.Google Scholar
[9]
Goto, S.
Maximal Buchsbaum modules over regular local rings and a structure theorem for generalised Cohen–Macau1ay modules. Adv. Studies Pure Math.
11 (1987), Commutative Algebra and Combinatorics, 31–64.Google Scholar
[10]
Goto, S., Hong, J. and Vasconcelos, W. V.
The homology of parameter ideals. J. Algebra
368 (2012), 271–299.Google Scholar
[11]
Herzog, J., Simis, A. and Vasconcelos, W. V.
Approximation complexes of blowing-up rings.II, J. Algebra
82 (1983), 53–83.Google Scholar
[12]
Huneke, C.
On the symmetric and Rees algebra of an ideal generated by a d–sequence. J. Algebra
62 (1980), 268–275.CrossRefGoogle Scholar
[13]
Huneke, C.
The theory of d–sequences and powers of ideals. Adv. in Math.
46 (1982), 249–279.Google Scholar
[14]
Kawasaki, T.
On Cohen-Macaulayfication of certain quasi-projective schemes. J. Math. Soc. Japan
50 (1998), 969–991.Google Scholar
[15]
Mandal, M., Singh, B. and Verma, J. K.
On some conjectures about the Chern numbers of filtrations. J. Algebra
325 (2011), 147–162.CrossRefGoogle Scholar
[16]
Polini, C. and Xie, Y. Generalised Hilbert functions. arXiv: math.AC/1202.4106v1.Google Scholar
[17]
Schenzel, P.
On the use of local cohomology in algebra and geometry. In Six Lectures on Commutative Algebra. Progr. Math.
166, (Birkhäuser, Boston, 1998), 241–292.Google Scholar
[18]
Schenzel, P., Trung, N. V. and Cuong, N. T.
Verallgemeinerte Cohen–Macaulay–Moduln, Math. Nachr.
85 (1978), 57–73.Google Scholar
[19]
Stückrad, J. and Vogel, W.
Buchsbaum Rings and Applications. (VEB Deutschcher Verlag der Wissenschaften, Berlin
1986).CrossRefGoogle Scholar
[20]
Trung, N. V.
Toward a theory of generalised Cohen–Macaulay modules. Nagoya Math. J.
102 (1986), 1–49.Google Scholar
[21]
Ulrich, B. and Validashti, J.
A criterion for integral dependence of modules. Math. Res. Lett.
15 (2008), 149–162.CrossRefGoogle Scholar
[22]
Vasconcelos, W. V.
The Chern coefficients of local rings. Michigan Math. J.
57 (2008), 725–744.Google Scholar