Published online by Cambridge University Press: 25 April 2013
We study the asymptotics of the higher dimensional Reidemeister torsion for torus knot exteriors, which is related to the results by W. Müller and P. Menal–Ferrer and J. Porti on the asymptotics of the Reidemeister torsion and the hyperbolic volumes for hyperbolic 3-manifolds. We show that the sequence of 1/(2N)2) log | Tor(EK; ρ2N)| converges to zero when N goes to infinity where TorEK; ρ2N is the higher dimensional Reidemeister torsion of a torus knot exterior and an acyclic SL2N(ℂ)-representation of the torus knot group. We also give a classification for SL2(ℂ)-representations of torus knot groups, which induce acyclic SL2N(ℂ)-representations.