No CrossRef data available.
Article contents
Harmonic morphisms from homogeneous spaces of positive curvature
Published online by Cambridge University Press: 28 July 2014
Abstract
We prove local existence of complex-valued harmonic morphisms from any Riemannian homogeneous space of positive curvature, except the Berger space Sp(2)/SU(2).
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 157 , Issue 2 , September 2014 , pp. 321 - 327
- Copyright
- Copyright © Cambridge Philosophical Society 2014
References
REFERENCES
[1]Aloff, S. and Wallach, N. R.An infinite family of distinct 7-manifolds admitting positively curved Riemannian structures, Bull. Amer. Math. Soc. 81 (1975), 93–97.CrossRefGoogle Scholar
[2]Baird, P. and Eells, J.A Conservation Law for Harmonic Maps. Geometry Symposium Utrecht 1980. Lecture Notes in Math. vol. 894, (Springer 1981), pp. 1–25.Google Scholar
[3]Baird, P. and Wood, J. C.Harmonic Morphisms Between Riemannian Manifolds. London Math. Soc. Monogr. No. 29 (Oxford University Press, 2003).CrossRefGoogle Scholar
[4]Bérard–Bergery, L.Sur certaines fibrations d'espaces homogénes riemanniens. Compositio Math. 30 (1975), 43–61.Google Scholar
[5]Bérard–Bergery, L.Les variétés riemanniennes homogénes simplement connexes de dimension impaire á courbure strictement positive. J. Math. Pures Appl. (9) 55 (1976), 47–67.Google Scholar
[6]Berger, M.Les variétés riemanniennes homogénes normales simplement connexes á courbure strictement positive. Ann. Scuola Norm. Sup. Pisa. (3) 15 (1961), 179–246.Google Scholar
[7]Besse, A. L.Einstein Manifolds. Ergeb. Math. Grenzgeb. (3) 10 (Springer-Verlag, 1987).Google Scholar
[8]Elíasson, H. I.Die Krümmung des Raumes Sp2/SU2 von Berger. Math. Ann. 164 (1966), 317–323.CrossRefGoogle Scholar
[9]Fuglede, B.Harmonic morphisms between Riemannian manifolds. Ann. Inst. Fourier 28 (1978), 107–144.CrossRefGoogle Scholar
[10]Gudmundsson, S.The Bibliography of Harmonic Morphisms. http://www.matematik.lu.se/matematiklu/personal/sigma/harmonic/bibliography.html.Google Scholar
[11]Gudmundsson, S.Harmonic morphisms from complex projective spaces. Geom. Dedicata 53 (1994), 155–161.CrossRefGoogle Scholar
[12]Gudmundsson, S. and Svensson, M.Harmonic morphisms from solvable Lie groups. Math. Proc. Camb. Phil. Soc. 147 (2009), 389–408.CrossRefGoogle Scholar
[13]Ishihara, T.A mapping of Riemannian manifolds which preserves harmonic functions. J. Math. Soc. Japan 7 (1979), 345–370.Google Scholar
[14]Wallach, N. R.Compact homogeneous Riemannian manifolds with strictly positive curvature. Ann. of Math. (2) 96 (1972), 277–295.CrossRefGoogle Scholar
[15]Wilking, B.The normal homogeneous space (SU(3) × SO(3))/US*(2) has positive sectional curvature. Proc. Amer. Math. Soc. 127 (1999), 1191–1194.CrossRefGoogle Scholar
[16]Ziller, W.Examples of Riemannian Manifolds with Non-Negative Sectional Curvature. Surveys Differ. Geom. XI, 63102 (Int. Press, Somerville, MA, 2007).Google Scholar