No CrossRef data available.
Harmonic functions on a Riemannian ball
Published online by Cambridge University Press: 24 October 2008
Extract
Consider the classes OHX of noncompact Riemannian manifolds M of dimension N ≥ 2 carrying no non-constant harmonic functions with properties X = P (positive), B (bounded), D (Dirichlet finite), or BD (B and D). Denote by OG the class of parabolic manifolds of dimension N ≥ 2. The following complete string of strict inclusion relations is known:
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 80 , Issue 2 , September 1976 , pp. 277 - 282
- Copyright
- Copyright © Cambridge Philosophical Society 1976
References
REFERENCES
(1)Hada, D., Sario, L. and Wang, C.N-manifolds carrying bounded but no Dirichlet finite harmonic functions. Nagoya Math. J. 54 (1974), 1–6.CrossRefGoogle Scholar
(2)Müller, C.Spherical Harmonics (Lecture Notes, Berlin, Heidelberg, New York, Springer-Verlag, 1966).CrossRefGoogle Scholar
(3)Nakai, M.A test of Picard's principle for rotation free density. J. Math. Soc. Japan 27 (1975), 412–431.Google Scholar
(4)Sario, L. and Nakai, M.Classification theory of Riemann surfaces (Grundlehren, Berlin, Heidelberg, New York, Springer-Verlag, 1970).CrossRefGoogle Scholar