A geometric proof that alternating knots are non-trivial
Published online by Cambridge University Press: 24 October 2008
Extract
There are many proofs in the literature of the non-triviality of alternating, classical links in the 3-sphere, but almost all use a combinatorial argument involving some algebraic invariant, namely the determinant [1], the Alexander polynomial [3], the Jones polynomial [5], and, in [6], the Q-polynomial of Brandt–Lickorish–Millett. Indeed, alternating links behave remarkably well with respect to these and other invariants, but this fact has not led to any significant geometric understanding of alternating link types. Therefore it is natural to seek purely geometric proofs of geometric properties of these links. Gabai has given in [4] a striking geometric proof of a related result, also proved earlier by algebraic means in [3], namely that the Seifert surface obtained from a reduced alternating link diagram by Seifert's algorithm has minimal genus for that link. Here, we give an elementary geometric proof of non-triviality of alternating knots, using a slight variation of the techniques set forth in [7, 8]. Note that if L is a link of more than one component and some component of L is spanned by a disk whose interior lies in the complement of L, then L is a split link, i.e. it is separated by a 2-sphere in S3\L; thus we do not consider alternating links of more than one component here, as it is proved in [7] that a connected alternating diagram cannot represent a split link.
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 109 , Issue 3 , May 1991 , pp. 425 - 431
- Copyright
- Copyright © Cambridge Philosophical Society 1991
References
REFERENCES
- 9
- Cited by