No CrossRef data available.
Generators on the arc component of compact connected groups
Published online by Cambridge University Press: 24 October 2008
Extract
It is well-known that a compact connected abelian group G has weight w(G) less than or equal to the cardinality c of the continuum if and only if it is monothetic; that is, if and only if it can be topologically generated by one element. Hofmann and Morris [2] extended this by showing that a compact connected (not necessarily abelian) group can be topologically generated by two elements if and only if w(G) ≤ c.
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 113 , Issue 3 , May 1993 , pp. 479 - 486
- Copyright
- Copyright © Cambridge Philosophical Society 1993
References
REFERENCES
[1]Hofmann, K. H. and Morris, S. A.. Free compact groups I: Free compact abelian groups. Topology Appl. 23(1986), 41–64CrossRefGoogle Scholar
[2]Hofmann, K. H. and Morris, S. A.. Weight and c. J. Pure Appl. Algebra 68 (1990), 181–194.CrossRefGoogle Scholar
[3]Hofmann, K. H. and Morris, S. A.. Free compact groups III: Free semisimple compact groups. In Proceedings of the Categorical Topology conference, Prague, August 1988 (editors Adámek, J. and MacLane, S.), (World Scientific Publishers 1989), pp. 208–219.Google Scholar
[4]Hofmann, K. H., Wu, T. S. and Yang, J. S.. Equidimensional immersions of locally compact groups. Math. Proc. Cambridge Philos. Soc. 105 (1989), 253–261.CrossRefGoogle Scholar
[5]Iwasawa, K.. On some types of topological groups. Ann. of Math. 50 (1949), 507–558.CrossRefGoogle Scholar