Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-27T09:49:12.550Z Has data issue: false hasContentIssue false

Generalized fractions, Buchsbaum modules and generalized Cohen-Macaulay modules

Published online by Cambridge University Press:  24 October 2008

R. Y. Sharp
Affiliation:
University of Sheffield
H. Zakeri
Affiliation:
University for Teacher Education, Tehran

Extract

Let A be a (commutative Noetherian) local ring (with identity) having maximal ideal m and positive dimension. This note is concerned with, among other things, a complex of A -modules which was studied in [8] and which involves modules of generalized fractions derived from A and subsets of systems of parameters for A; in ([8], 3·5), the complex was shown to have connections with local cohomology. The complex is described as follows.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Hamieh, M. A. and Sharp, R. Y.. Krull dimension and generalized fractions. Proc. Edinburgh Math. Soc. (to appear).Google Scholar
[2]Northcott, D. G.. An Introduction to Homological Algebra (Cambridge University Press, 1960).CrossRefGoogle Scholar
[3]O'Carkoll, L.. On the generalized fractions of Sharp and Zakeri. J. London Math. Soc. (2) 28 (1983), 417427.CrossRefGoogle Scholar
[4]Renschxjch, B., Stückbad, J. and Vogel, W.. Weitere Bemerkungen zu einem Problem der Schnittheorie und über ein Maβ von A. Seidenberg für die Imperfektheit. J. Algebra 37 (1975), 447471.CrossRefGoogle Scholar
[5]Schenzel, P., Trung, N. V. and Cuong, N. T.. Verallgemeinerte Cohen-Macaulay-Moduln. Math. Nachr. 85 (1978), 5773.CrossRefGoogle Scholar
[6]Sharp, R. Y.. Local cohomology theory in commutative algebra. Quart. J. Math. Oxford (2) 21 (1970), 425434.CrossRefGoogle Scholar
[7]Sharp, R. Y. and Zakeri, H.. Modules of generalized fractions. Mathematika 29 (1982), 3241.CrossRefGoogle Scholar
[8]Sharp, R. Y. and Zakeri, H.. Local cohomology and modules of generalized fractions. Mathematika 29 (1982), 296306.CrossRefGoogle Scholar
[9]Sharp, R. Y. and Zakert, H.. Modules of generalized fractions and balanced big Cohen-Macaulay modules. Commutative algebra: Durham 1981 (London Mathematical Society Lecture Notes 72, Cambridge University Press, 1982), pp. 6182.Google Scholar
[10]Vocel, W.. A nonzero-divisor characterization of Buchsbaum modules. Michigan Math. J. 28 (1981), 147152.Google Scholar