Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T14:47:17.540Z Has data issue: false hasContentIssue false

A further note on Ramanujan's arithmetical function τ(n)

Published online by Cambridge University Press:  24 October 2008

G. H. Hardy
Affiliation:
Trinity College

Extract

This note is a sequel to two in earlier volumes of the Proceedings, the first by myself and the second by Wilton†.

Suppose that

for |z| <1; that x > 0; that

forr ≥ 0; and that

where τ(x) is to mean 0 if x is not an integer. Thus

where the dash shows that the last term is to be halved when x is an integer;

forr > 1; and

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1938

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Davenport, H.On certain exponential sums.Journal für Math. 169 (1933), 158–76.Google Scholar
(2)Hardy, G. H.Note on Ramanujan's arithmetical function τ(n).Proc. Cambridge Phil. Soc. 23 (1927), 675–80.CrossRefGoogle Scholar
(3)Hardy, G. H. and Landau, E.The lattice points of a circle.” Proc. Roy. Soc. A, 105 (1924), 244–58.Google Scholar
(4)Hardy, G. H. and Riesz, M.The general theory of Dirichlet's series (Cambridge, 1915).Google Scholar
(5)Landau, E.Vorlesungen über Zahlentheorie, 2 (Leipzig, 1927).Google Scholar
(6)Salié, H.Zur Abschätzung der Fourierkoeffizienten ganzer Modulformen.” Math. Zeitschrift, 36 (1933), 263–78.CrossRefGoogle Scholar
(7)Watson, G. N.Theory of Bessel functions (Cambridge, 1922).Google Scholar
(8)Wilton, J. R.A note on Ramanujan's arithmetical function τ(n).” Proc. Cambridge Phil. Soc. 25 (1928), 121–9.CrossRefGoogle Scholar