Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T13:54:32.393Z Has data issue: false hasContentIssue false

Free S1-actions and involutions on homotopy seven spheres

Published online by Cambridge University Press:  24 October 2008

K. H. Mayer
Affiliation:
University of Dortmund

Extract

In this note the concept of modest vector bundle, defined in (5), is used to define an invariant for certain free S1-actions. This invariant is a rational function and classifies the equivalence classes of free S1-actions on homotopy seven spheres. In a similar way an invariant for free involutions is defined, which is a generalization of the Spin invariant defined in (4). Using this invariant and Hirzebruch's α-invariant it is possible to state conditions for a free involution of a homotopy seven sphere to be embedded in a free S1-action.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Atiyah, M. F. and Hirzebruch, F. Spin-manifolds and group actions. In Essays on topology and related topics (Berlin, Heidelberg, New York, Springer-Verlag, 1970, pp. 18‘28).CrossRefGoogle Scholar
(2)Atiyah, M. F. and Singer, I. M.The index of elliptic operators: III. Ann. Math. 87 (1968), 546‘604.CrossRefGoogle Scholar
(3)Hirzebruch, F. Involutionen auf Mannigfaltigkeiten. Proceedings of the Conference on Transformation Groups, New Orleans, 1967 (Berlin, Heidelberg, New York, Springer-Verlag, 1968, pp. 148‘166).Google Scholar
(4)Mayer, K. H.Fixpuriktfreie Involutionen von 7-Sphären. Math. Ann. 185 (1970), 250258.CrossRefGoogle Scholar
(5)Mayer, K. H. and Schwarzerberger, R. L. E.Lefschetz formulae for modest vector bundles. Proc. Cambridge Philos. Soc. 73 (1973), 439453.CrossRefGoogle Scholar
(6)Milnor, J. W.Remarks concerning Spin manifolds, Differential and Combinatorial Topology. A Symposium in Honor of Marston Morse (Princeton University Press, 1965, pp. 55‘62).CrossRefGoogle Scholar
(7)Montgomery, D. and Yang, C. T. Differentiable actions on homotopy seven spheres. II. Proceedings of the Conference on Transformation Groups, New Orleans, 1967 (Berlin, Heidelberg, New York, Springer-Verlag, 1968, pp. 125‘134).Google Scholar
(8)Montgomery, D. and Yang, C. T. Free differentiable actions on homotopy spheres. Proceedings of the Conference on Transformation Groups, New Orleans, 1967 (Berlin, Heidelberg, New York, Springer-Verlag, 1968, pp. 175‘192).Google Scholar