Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T19:03:30.539Z Has data issue: false hasContentIssue false

A finite set of generators for the homeotopy group of a non-orientable surface

Published online by Cambridge University Press:  24 October 2008

D. R. J. Chillingworth
Affiliation:
University of Warwick

Extract

Let X be a closed surface, i.e. a compact connected 2-manifold without boundary. If Gx denotes the group of all homeomorphisms of X to itself, and Nx is the normal subgroup consisting of homeomorphisms which are isotopic to the identity, then the quotient group Gx/Nx is called the homeotopy group of X and is denoted by ∧x.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Epstein, D. B. A.Curves on 2-manifolds and isotopies. Acta Math. 115 (1966), 83107.CrossRefGoogle Scholar
(2)Lickorish, W. B. R.A representation of orientable combinatorial 3-manifolds. Ann. of Math. (2) 76 (1962), 531540.CrossRefGoogle Scholar
(3)Lickorish, W. B. R.Homeomorphisms of non-orientable 2-manifolds. Proc. Cambridge Philos. Soc. 59 (1963), 307317.CrossRefGoogle Scholar
(4)Lickorish, W. B. R.A finite set of generators for the homeotopy group of a 2-manifold. Proc. Cambridge Philos. Soc. 60 (1964), 769778.CrossRefGoogle Scholar
(5)Lickorish, W. B. R.On the homeomorphisms of a non-orientable surface. Proc. Cambridge Philos. Soc. 61 (1965), 6164.CrossRefGoogle Scholar
(6)Lickorish, W. B. R.On the homeotopy group of a 2-manifold (corrigendum). Proc. Cambridge Philos. Soc. 62 (1966), 679681.CrossRefGoogle Scholar
(7)Zieschang, H.Studien zur kombinatorischen Topologie von Flächen und ebenen diskontinuerlichen Gruppen. Duplicated, Frankfurt on Main (1964). Also: Math. Scand. 17 (1965).Google Scholar