Published online by Cambridge University Press: 05 September 2005
This paper presents some new results on algebraic K-theory with finite coefficients. The argument is based on a topological construction of a space $F_mK(R)$, for any ring $R$ and any integer $m\geq 2$, having the property that the ordinary homotopy theory of $F_mK(R)$ is isomorphic to the algebraic K-theory of $R$ with coefficients in $\bb {Z}/m$: $\pi_n(F_mK(R))\cong K_n(R;\bb {Z}/m)$ for $n\geq 1$. This space $F_mK(R)$ is called the $\mod m$ K-theory space of $R$. The paper is devoted to the investigation of several properties of the groups $K_n(R;\bb {Z}/m)$, for $n\in\bb {Z}$, and to some calculations of the integral homology of finite K-theory spaces.