Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T19:07:37.935Z Has data issue: false hasContentIssue false

Finding fundamental units in cubic fields

Published online by Cambridge University Press:  24 October 2008

T. W. Cusick
Affiliation:
State University of New Yorkat Buffalo

Extract

This paper improves a method of Godwin (4) for finding a pair of fundamental units in a totally real cubic field. The determination of such a unit pair is a well known computational problem. There is an old algorithm (circa 1896) of Voronoi which solves this problem, but the algorithm is quite complicated (an account of it is given in the book of Delone and Faddeev ((3), chapter IV, part A)). The method of Godwin is, in principle, much simpler. However, this method also has its drawbacks (more is said about this in Section 4 below). Indeed, when Godwin's student Angell produced his large table (see (1)) of totally real cubic fields some 15 years after (4) appeared, Voronoi's algorithm was used to compute the pairs of fundamental units.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Angell, I. O.A table of totally real cubic fields. Math. Comput. 30 (1976), 184187.CrossRefGoogle Scholar
(2)Brunotte, H. and Halter-Koch, F.Zur Einheitenberechnung in totalreellen kubischen Zahlkorpern nach Godwin. J. Number Theory 11 (1979), 552559.CrossRefGoogle Scholar
(3)Delone, B. N. and Faddeev, D. K.The theory of irrationalities of the third degree. Translations Math. Monographs vol. 10 (American Mathematical Society, 1964).Google Scholar
(4)Godwin, H. J.The determination of units in totally real cubic fields. Proc. Cambridge Philos. Soc. 56 (1960), 318321.CrossRefGoogle Scholar
(5)Gras, M.-N.Note a propos d'une conjecture de H. J. Godwin sur les unités des corps cubiques. Ann. Inst. Fourier 30, 4 (1980), 16.CrossRefGoogle Scholar
(6)Hasse, H.Arithmetische Bestimmung von Grundeinheit und Klassenzahl in zyklischen kubischen und biquadratischen Zahlkorpern. Abh. Deutsch. Akad. Wiss. Berlin (1948), no. 2.Google Scholar
(7)Minkowski, H.Zur Theorie der Einheiten in den algebraischen Zahlkorpern. Ges. Abh. vol. I, pp. 316319 (or Nach. Wiss. Gott., Math.-phys. Kl., 1900, 9093).Google Scholar