Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T14:17:33.246Z Has data issue: false hasContentIssue false

Extremum principles for a class of boundary-value problems

Published online by Cambridge University Press:  24 October 2008

A. M. Arthurs
Affiliation:
Department of Mathematics, University of York

Abstract

Maximum and minimum principles are developed for boundary-value problems with field equations T*Tφ + f(φ) = 0 in some region V, subject to φ = h(Tφ) on the boundary of V.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Noble, B. University of Wisconsin Mathematics Research Center Report, no. 483 (1964).Google Scholar
(2)Arthurs, A. M.Proc. Roy. Soc. Ser. A. 298 (1967), 97.Google Scholar
(3)Arthurs, A. M. and Robinson, P. D.Proc. Roy. Soc. Ser. A. 303 (1968), 497.Google Scholar
(4)Arthurs, A. M. and Robinson, P. D.Proc. Roy. Soc. Ser. A. 303 (1968), 503.Google Scholar
(5)Arthurs, A. M. and Robinson, P. D.Proc. Cambridge Philos. Soc. (in the Press).Google Scholar
(6)Arthurs, A. M. and Anderson, N.Nuovo Cimento, 55B (1968), 566CrossRefGoogle Scholar
Arthurs, A. M. and Anderson, N.Nuovo Cimento, 56B (1968), 198.CrossRefGoogle Scholar
(7)Anderson, N. and Arthurs, A. M.J. Math. Phya. 9 (1968), 2037.CrossRefGoogle Scholar
(8)Arthurs, A. M. and Robinson, P. D.Proc. Cambridge Philos. Soc. (to appear).Google Scholar
(9)Pombaning, G. C.J. Mathematical Phys. 8 (1967), 2096.CrossRefGoogle Scholar
(10)Robinson, P. D. and Arthurs, A. M.J. Mathematical Phys. 9 (1968), 1364.CrossRefGoogle Scholar