Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-27T11:50:56.909Z Has data issue: false hasContentIssue false

Exact anisotropic solutions of d = 11 supergravity

Published online by Cambridge University Press:  24 October 2008

D. Lorenz-Petzold
Affiliation:
Fakultät für Physik, Universität Konstanz, D-7750 Konstanz, Fed. Rep., Germany

Abstract

We present the first anisotropic cosmological solutions of d = 11 supergravity. The solutions given are of Bianchi types III, V and VIh coupled with the seven-dimensional torus. The cosmological implications are briefly discussed.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Alvarez, E.. Cosmological solutions of N = 1 supergravity in 11 dimensions. Phys. Rev. D 30 (1984), 13941396.CrossRefGoogle Scholar
[2]Castellani, L., D'Aubia, R. and Fré, P.. Seven lectures on the group-manifold approach to supergravity and the spontaneous compactification of extra dimensions. In Super-symmetry and Supergravity 1983, ed. Milewski, B. (World Scientific, 1983), 292.Google Scholar
[3]Castellani, L., D'Aubia, R. and Fré, P.. SU(3)× SU(2)× U(1) from D = 11 supergravity. Nuclear Phys. B 239 (1984), 610652.CrossRefGoogle Scholar
[4]Castellani, L., Romans, L. J. and Warner, N. P.. A classification of compactifying solutions for d = 11 supergravity. Nuclear Phys. B 241 (1984), 429462.CrossRefGoogle Scholar
[5]Castellani, L. and Romans, L. J.. N = 3 and N = 1 supersymmetry in a new class of solutions for d = 11 supergravity. Nuclear Phys. B 238 (1984), 687701.CrossRefGoogle Scholar
[6]Chapline, G. F. and Gibbons, G. W.. Unification of elementary particle physics and cosmology in ten dimensions. Phys. Lett. B 135 (1984), 4346.CrossRefGoogle Scholar
[7]Cremmer, E., Julia, B. and Scherk, J.. Supergravity theory in 11 dimensions. Phys. Lett. B 76 (1978), 409412.CrossRefGoogle Scholar
[8]Cremmer, E. and Julia, B.. The SO(8) supergravity. Nuclear Phys. B 159 (1979), 141212.CrossRefGoogle Scholar
[9]Dirac, P. A. M.. A new basis for cosmology. Proc. Roy. Soc. London Ser. A 165 (1938), 199208.Google Scholar
[10]Dolan, B.. A new solution of d = 11 supergravity with internal isometry group SU(3)× SU(2)× U(1). Phys. Lett. B 140 (1984), 304306.CrossRefGoogle Scholar
[11]Duff, M. J. and van Nieuwenhuizen, P.. Quantum inequivalence of different field representations. Phys. Lett. B 94 (1980), 179182.CrossRefGoogle Scholar
[12]Duff, M. J. and Pope, C. N.. Kaluza-Klein Supergravity and the seven-sphere. In Super-symmetry and Supergravity ‘82, ed. Ferrara, S., Taylor, J. C. and van Nieuwenhuizen, P. (World Scientific, 1983).Google Scholar
[13]Englert, F.. Spontaneous compactification of eleven-dimensional supergravity. Phys. Lett. B 119 (1982), 339342.CrossRefGoogle Scholar
[14]Freund, P. G. O.. Kaluza-Klein cosmologies. Nuclear Phys. B 209 (1982), 146156.CrossRefGoogle Scholar
[15]Freund, P. G. O. and Rubin, M. A.. Dynamics of dimensional reduction. Phys. Lett. B 97 (1980), 233235.CrossRefGoogle Scholar
[16]Gleiser, M., Rajpoot, S. and Taylor, J. G.. Cosmologies in ten dimensions. Phys. Lett. B 138 (1984), 377382.CrossRefGoogle Scholar
[17]Gleiser, M., Rajpoot, S. and Taylor, J. G.. Search for higher-dimensional cosmologies. Phys. Rev. D 30 (1984), 756759.Google Scholar
[18]Kaluza, Th.. Zum Unitätsproblem der Physik. Sitz. Ber. preuss. Akad. Berlin, Phys. Math. Kl. 1921, 966972.Google Scholar
[19]Klein, O.. Quantentheorie und fünfdimensionale Relativitätstheorie. Z. Phys. 37 (1926), 895906.CrossRefGoogle Scholar
[20]Kramer, D., Stephanie, H., MacCallum, M. A. H. and Herlt, E.. Exact Solutions of Einstein's Field Equations (VEB, Deutscher Verlag der Wissenschaften, 1980).Google Scholar
[21]Moorhouse, R. G. and Nixon, J.. Cosmological equations in Kaluza-Klein d = 11 super-gravity theory. Phys. Lett. B 145 (1984), 3944.CrossRefGoogle Scholar
[22]Myung, Y. S. and Kim, Y. D.. Cosmology in D-dimensional gravity coupled to a rank-three field FMNP. Phys. Lett. B 145 (1984), 4548.CrossRefGoogle Scholar
[23]Wainwright, J.. A spatially homogeneous cosmological model with plane-wave singularity. Phys. Lett. A 99 (1983), 301303.CrossRefGoogle Scholar
[24]Wainwright, J.. Power law singularities in orthogonal spatially homogeneous cosmologies. Gen. Relativity Gravitation 16 (1984), 657667.CrossRefGoogle Scholar
[25]Wainwright, J. and Anderson, P. J.. Isotropic singularities and isotropization in a class Bianchi type-VIn cosmologies. Gen. Relativity Gravitation 16 (1984), 609624.CrossRefGoogle Scholar
[26]Witten, E.. Search for a realistic Kaluza-Klein theory. Nuclear Phys. B 186 (1981), 412428.CrossRefGoogle Scholar