Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-28T14:19:57.886Z Has data issue: false hasContentIssue false

Euler operators and conservation laws of the BBM equation

Published online by Cambridge University Press:  24 October 2008

Peter J. Olver
Affiliation:
University of Oxford

Abstract

The BBM or Regularized Long Wave Equation is shown to possess only three non-trivial independent conservation laws. In order to prove this result, a new theory of Euler-type operators in the formal calculus of variations will be developed in detail.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Abdulloev, Kh. O., Bogolubsky, I. L. and Makhankov, V. G.One more example of inelastic soliton interaction. Phys. Lett. 56 A (1976), 427428.CrossRefGoogle Scholar
(2)Benjamin, T. B., Bona, J. L. and Mahony, J. J.Model equations for long waves in non-linear dispersive systems. Phil. Trans. Roy. Soc. London, Ser. A 272 (1972), 4778.Google Scholar
(3)Bona, J. L., Pritchard, W. G. and Scott, L. R.Solitary-wave interaction. Univ. of Essex Fluid Mech. Research Inst. Report No. 94 (1978).Google Scholar
(4)Eilbeck, J. C. and McGuire, G. R.Numerical study of the regularized long wave equation. I. Numerical methods. J. Computational Phys. 19 (1975), 4357.CrossRefGoogle Scholar
(5)Eilbeck, J. C. and McGuire, G. R.Numerical study of the regularized long wave equation. II. Interaction of solitary waves. J. Computational Phys. 23 (1977), 6373.CrossRefGoogle Scholar
(6)Gel'fand, I. M. and Dikǐ, L. A.The asymptotics of the resolvent of Sturm–Liouville equations and the algebra of the Korteweg–de Vries', Equation. Uspehi Mat. Nauk 30 (1975), 67100.Google Scholar
(7)Gel'fand, I. M. and Dikǐ, L. A.A Lie algebra structure in a formal variational calculation. Funkcional Anal. i Priložen 10 (1976), 1825.Google Scholar
(8)Korteweg, D. J. and De Vries, G.On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. May. 39 (1895), 422443.CrossRefGoogle Scholar
(9)Kruskal, M. D., Miura, R. M., Gardner, C. S. and Zabusky, N. J.Korteweg–de Vries equation and generalizations. V. Uniqueness and nonexistence of polynomial conservation laws. J. Math. Phys. 11 (1970), 952960.Google Scholar
(10)Lax, P. D.Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure Appl. Math. 21 (1968), 467490.CrossRefGoogle Scholar
(11)Lax, P. D.Almost periodic solutions of the KdV equation. SIAM Rev. 18 (1976), 351375.Google Scholar
(12)Miura, R. M.The Korteweg–de Vries equation: a survey of results. SIAM Rev. 18 (1976), 412458.CrossRefGoogle Scholar
(13)Miura, R. M., Gardner, C. S. and Kruskal, M. D.Korteweg–de Vries equation and generalizations. II. Existence of conservation laws and constants of motion. J. Math. Phys. 9 (1968), 12041209.CrossRefGoogle Scholar
(14)Olver, P. J.Evolution equations possessing infinitely many symmetries. J. Math. Phys. 18 (1977), 12121215.CrossRefGoogle Scholar
(15)Olver, P. J. and Shakiban, C.A resolution of the Euler operator: I. Proc. Amer. Math. Soc. 66 (1978), 223229.CrossRefGoogle Scholar
(16)Whitham, G. B.Linear and nonlinear waves (New York, Wiley, 1974).Google Scholar