No CrossRef data available.
Article contents
The Euler number of certain primitive Calabi–Yau threefolds
Published online by Cambridge University Press: 01 January 2000
Abstract
Recently Calabi–Yau threefolds have been studied intensively by physicists and mathematicians. They are used as physical models of superstring theory [Y] and they are one of the building blocks in the classification of complex threefolds [KMM]. These are three dimensional analogues of K3 surfaces. However, there is a fundamental difference as is to be expected. For K3 surfaces, the moduli space N of K3 surfaces is irreducible of dimension 20, inside which a countable number of families Ng with g [ges ] 2 of algebraic K3 surfaces of dimension 19 lie as a dense subset. More explicitly, an element in Ng is (S, H), where S is a K3 surface and H is a primitive ample divisor on S with H2 = 2g − 2. For a generic (S, H), Pic (S) is generated by H, so that the rank of the Picard group of S is 1. A generic surface S in N is not algebraic and it has Pic (S) = 0, but dim N = h1(S, TS) = 20 [BPV]. It is quite an interesting problem whether or not the moduli space M of all Calabi–Yau threefolds is irreducible in some sense [R]. A Calabi–Yau threefold is algebraic if and only if it is Kaehler, while every non-algebraic K3 surface is still Kaehler. Inspired by the K3 case, we define Mh,d to be {(X, H)[mid ]H3 = h, c2(X) · H = d}, where H is a primitive ample divisor on a smooth Calabi–Yau threefold X. There are two parameters h, d for algebraic Calabi–Yau threefolds, while there is only one parameter g for algebraic K3 surfaces. (Note that c2(S) = 24 for every K3 surface.) We know that Ng is of dimension 19 for every g and is irreducible but we do not know the dimension of Mh,d and whether or not Mh,d is irreducible. In fact, the dimension of Mh,d = h1(X, TX), where (X, H) ∈ Mh,d. Furthermore, it is well known that χ(X) = 2 (rank of Pic (X) − h1(X, TX)), where χ(X) is the topological Euler characteristic of X. Calabi–Yau threefolds with Picard rank one are primitive [G] and play an important role in the moduli spaces of all Calabi–Yau threefolds. In this paper we give a bound on c3 of Calabi–Yau threefolds with Picard rank 1.
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 128 , Issue 1 , January 2000 , pp. 79 - 86
- Copyright
- The Cambridge Philosophical Society 2000