Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by Crossref.
Möllert, Rögnvaldur G.
1992.
Ends of graphs. II.
Mathematical Proceedings of the Cambridge Philosophical Society,
Vol. 111,
Issue. 3,
p.
455.
Dunwoody, M.J.
1993.
Inaccessible groups and protrees.
Journal of Pure and Applied Algebra,
Vol. 88,
Issue. 1-3,
p.
63.
Diestel, R.
Jung, H. A.
and
M�ller, R. G.
1993.
On vertex transitive graphs of infinite degree.
Archiv der Mathematik,
Vol. 60,
Issue. 6,
p.
591.
Woess, Wolfgang
1993.
Fixed sets and free subgroups of groups acting on metric spaces.
Mathematische Zeitschrift,
Vol. 214,
Issue. 1,
p.
425.
M�ller, R�gnvaldur G.
1994.
Primitivity and ends of graphs.
Combinatorica,
Vol. 14,
Issue. 4,
p.
477.
Jung, H.A.
1994.
On finite fixed sets in infinite graphs.
Discrete Mathematics,
Vol. 131,
Issue. 1-3,
p.
115.
Krön, B.
2001.
Quasi-isometries between non-locally-finite graphs and structure trees.
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg,
Vol. 71,
Issue. 1,
p.
161.
Diestel, Reinhard
and
Kühn, Daniela
2003.
Graph-theoretical versus topological ends of graphs.
Journal of Combinatorial Theory, Series B,
Vol. 87,
Issue. 1,
p.
197.
Krön, Bernhard
and
Möller, Rögnvaldur G.
2008.
Metric ends, fibers and automorphisms of graphs.
Mathematische Nachrichten,
Vol. 281,
Issue. 1,
p.
62.
Krön, Bernhard
and
Möller, Rögnvaldur G.
2008.
Analogues of Cayley graphs for topological groups.
Mathematische Zeitschrift,
Vol. 258,
Issue. 3,
p.
637.
Gray, Robert
2009.
k-CS-transitive infinite graphs.
Journal of Combinatorial Theory, Series B,
Vol. 99,
Issue. 2,
p.
378.
GRAY, ROBERT
and
TRUSS, JOHN K.
2009.
Cycle-free partial orders and ends of graphs.
Mathematical Proceedings of the Cambridge Philosophical Society,
Vol. 146,
Issue. 03,
p.
535.
Krön, Bernhard
2010.
Cutting up graphs revisited – a short proof of Stallings' structure theorem.
Groups – Complexity – Cryptology,
Vol. 2,
Issue. 2,
Diestel, Reinhard
and
Sprüssel, Philipp
2010.
The homology of a locally finite graph with ends.
Combinatorica,
Vol. 30,
Issue. 6,
p.
681.
Macpherson, Dugald
2011.
A survey of homogeneous structures.
Discrete Mathematics,
Vol. 311,
Issue. 15,
p.
1599.
Diestel, Reinhard
and
Sprüssel, Philipp
2011.
The fundamental group of a locally finite graph with ends.
Advances in Mathematics,
Vol. 226,
Issue. 3,
p.
2643.
Hamann, Matthias
2012.
End-transitive graphs.
Israel Journal of Mathematics,
Vol. 189,
Issue. 1,
p.
437.
Hamann, Matthias
2017.
Group actions on metric spaces: fixed points and free subgroups.
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg,
Vol. 87,
Issue. 2,
p.
245.
Dunwoody, Martin J.
2017.
Groups, Graphs and Random Walks.
p.
137.
Anantharaman-Delaroche, Claire
2018.
Amenable actions preserving a locally finite metric.
Expositiones Mathematicae,
Vol. 36,
Issue. 3-4,
p.
278.