Published online by Cambridge University Press: 24 October 2008
In this paper, Fourier integrals are used to solve some elastic problems of generalized plane stress and small transverse displacements in infinitely long, rectangular, isotropic plates stressed only at their edges. The Airy stress function and the transverse displacement satisfy the two-dimensional bi-harmonic equation, and the basic mathematical problem is to solve this equation subject to different sets of boundary conditions. Little attention has been given hitherto to problems in which some of the boundary conditions depend directly upon displacements. Here the general problem is solved when one long edge is fixed, and stresses or displacements are arbitrarily prescribed at the other, with no stresses and displacements at infinity. The problem of a concentrated edge force is discussed in detail and numerical values of the stresses at the fixed edge are given.