Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T14:36:54.124Z Has data issue: false hasContentIssue false

Double point surfaces of smooth immersions Mn → ℝ2n−2

Published online by Cambridge University Press:  24 October 2008

András Szücs
Affiliation:
Department of Analysis, Eötvös Loránd University, Budapest, Múzeum krt. 6–8, H-1088 Hungary

Extract

In recent years many papers have dealt with the zero-dimensional multiple point sets of smooth immersions of closed manifolds in Euclidean spaces (see, for example, [2, 6, 7, 8, 9, 10, 13, 14, 15, 21]). In the present paper we deal with the case when the double points form a two-dimensional surface and consider the following question: Which surfaces can occur as double point surfaces of self-transverse immersions of closed n-manifolds in ℝ2n−2? We prove the following

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Adams, J. F.. Vector fields on spheres. Bull. Amer. Math. Soc. 68 (1962), 3941.Google Scholar
[2]Banchoff, T.. Triple points and surgery of immersed surfaces. Proc. Amer. Math. Soc. 46, 407413 (1974).CrossRefGoogle Scholar
[3]Brown, R.. Embeddings, immersions and cobordism of differentiable manifolds. Bull. Amer. Math. Soc. 76 (1970), 763766.CrossRefGoogle Scholar
[4]Cohen, R. L.. The immersion conjecture for differentiable manifolds. Ann. of Math. (2) 122 (1985), 237328.CrossRefGoogle Scholar
[5]Dold, A.. Erzeugende der Thomschen Algebra N*. Math. Z. 65 (1956), 2535.CrossRefGoogle Scholar
[6]Eccles, P. J.. Multiple points of codimension one immersions. In Topology Symposium, Siegen 1979, Lecture Notes in Math. vol. 788 (Springer-Verlag, 1980), pp. 2338.CrossRefGoogle Scholar
[7]Eccles, P. J.. Multiple points of codimension one immersions of oriented manifolds. Math. Proc. Cambridge Philos. Soc. 87 (1980), 213220.CrossRefGoogle Scholar
[8]Eccles, P. J.. Codimension one immersions and the Kervaire invariant problem. Math. Proc. Cambridge Philos. Soc. 90 (1981), 483493.CrossRefGoogle Scholar
[9]Eccles, P. J. and Mitchell, W. P. R.. Triple points of immersed orientable 2n-manifolds in 3n-space. J. London Math. Soc. (2) 39 (1989), 335346.CrossRefGoogle Scholar
[10]Freedman, M.. Quadruple points of 3-manifolds in S 4. Comment. Math. Helv. 53 (1978), 385394.CrossRefGoogle Scholar
[11]Haefliger, A.. Plongements differentiables de variétés dans variétés. Comment. Math. Helv. 36 (1962), 4782.CrossRefGoogle Scholar
[12]Husemoller, D.. Fibre Bundles (McGraw-Hill Book Co., 1966).CrossRefGoogle Scholar
[13]Hughes, F.. Triple points of immersed 2n-manifolds in 3n-space. Quart. J. Math. Oxford Ser. (2) 34 (1983), 427431.CrossRefGoogle Scholar
[14]Koschorke, U.. Multiple points of immersions and the Kahn–Priddy theorem. Math. Z. 169 (1979), 223236.CrossRefGoogle Scholar
[15]Lannes, J.. Sur les immersions de Boy. In Algebraic Topology, Aarhus 1982, Lecture Notes in Math. vol. 1051 (Springer-Verlag, 1984), pp. 263270.CrossRefGoogle Scholar
[16]Mahowald, M. E.. On obstruction theory in orientable fibre bundles. Trans. Amer. Math. Soc. 110 (1964), 315349.CrossRefGoogle Scholar
[17]Mahowald, M. E. and Milgram, R. J.. Embedding real projective spaces. Ann. of Math. (2) 87 (1968), 411422.CrossRefGoogle Scholar
[18]Rees, E.. Embeddings of real projective spaces. Topology 10 (1971), 309312.Google Scholar
[19]Sanderson, B. J.. Immersions and embeddings of projective spaces. Proc. London Math. Soc. (3) 14 (1964), 137153.CrossRefGoogle Scholar
[20]Szücs, A.. Cobordism of maps with simplest singularities. In Topology Symposium, Siegen 1979, Lecture Notes in Math. vol. 788 (Springer-Verlag, 1980), pp. 223244.CrossRefGoogle Scholar
[21]Szücs, A.. On multiple points of odd multiplicity of immersions of odd codimensions. Bull. London Math. Soc. 22 (1990), 599601.CrossRefGoogle Scholar
[22]Viro, O.. Some integral calculus based on Euler characteristic. In Topology and Geometry, Lecture Notes in Math. vol. 1346 (Springer-Verlag), pp. 127138.Google Scholar
[23]Wall, C. T. C.. Determination of the cobordism ring. Ann. of Math. (2) 72 (1960), 292311.Google Scholar
[24]Wells, R.. Double covers and metastable immersions of spheres. Canad. J. Math. 26 (1974), 145176.CrossRefGoogle Scholar