Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-17T17:00:06.784Z Has data issue: false hasContentIssue false

Dirichlet's theorem on diophantine approximation

Published online by Cambridge University Press:  24 October 2008

R. C. Baker
Affiliation:
Royal Holloway College, Egham, Surrey

Extract

Let N take the values 1, 2, … A theorem of Dirichlet asserts that for any (x, y) in the Euclidean plane R2 the inequality

is soluble in integers q1, q2, p with 0 < max (|q1|, |q2|) ≤ N.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) Baker, A. and Schmidt, W. M. Diophantine approximation and Hausdorff dimension. Proc. London Math. Soc. (3), 21 (1970), 111.Google Scholar
(2) Baker, R. C. Sprindžuk's theorem and Hausdorff dimension. Mathematika 23 (1976), 184197.Google Scholar
(3) Davenport, H. and Schmidt, W. M. Dirichlet's theorem on Diophantine approximation. 1st. Naz. Alt. Matem., Symposia Mathematica 4 (1970), 113132.Google Scholar
(4) Davenport, H. and Schmidt, W. M. Dirichlet's theorem on Diophantine approximation. II. Acta Arith. 16 (1970), 413424.CrossRefGoogle Scholar
(5) ErdöS, P. and Turán, P. On a problem in the theory of uniform distribution. Proc. K. Ned. Akad. Wet. Amst. 51 (1948), 11461154, 12621269.Google Scholar
(6) Schmidt, W. M. Über Gitterpunkte auf gewissen Flächen. Monatah. Math. 68 (1964), 5974.Google Scholar
(7) Schmidt, W. M. Metrische Sätze über simultane Approximation abhängiger Grössen. Monatsh. Mat. 68, (1964), 154166.Google Scholar
(8) Sprindžuk, V. G. Mahler's problem in metric number theory (Providence: American Mathematical Society, 1969).Google Scholar
(9) Zygmund, A. Trigonometric series (Cambridge University Press, 1959).Google Scholar