Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T22:07:01.804Z Has data issue: false hasContentIssue false

Detecting cohomology classes for the proper LS category. The case of semistable 3-manifolds

Published online by Cambridge University Press:  21 December 2011

MANUEL CÁRDENAS
Affiliation:
Departamento de Geometría y Topología. Universidad de Sevilla, Apdo 1160, 41080-Sevilla, Spain. e-mail: [email protected], [email protected], [email protected]
FRANCISCO F. LASHERAS
Affiliation:
Departamento de Geometría y Topología. Universidad de Sevilla, Apdo 1160, 41080-Sevilla, Spain. e-mail: [email protected], [email protected], [email protected]
ANTONIO QUINTERO
Affiliation:
Departamento de Geometría y Topología. Universidad de Sevilla, Apdo 1160, 41080-Sevilla, Spain. e-mail: [email protected], [email protected], [email protected]

Abstract

We give sufficient conditions for the existence of detecting elements for the Lusternik–Schnirelmann category in proper homotopy. As an application we determine the proper LS category of some semistable one-ended open 3-manifolds.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Ayala, R., Domínguez, E. and Quintero, A.A theoretical framework for proper homotopy theory. Math. Proc. Camb. Phil. Soc. 107 (1990), 475482.CrossRefGoogle Scholar
[2]Ayala, R., Domínguez, E., Márquez, A. and Quintero, A.Lusternik–Schnirelmann invariants in proper homotopy. Pacific J. Math. 153 (1992), 201215.CrossRefGoogle Scholar
[3]Ayala, R. and Quintero, A.On the Ganea strong category in proper homotopy. Proc. Edinburgh Math. Soc. 41 (1998), 247263.CrossRefGoogle Scholar
[4]Baues, H. J.Algebraic Homotopy. Cambridge Studies in Advanced Math. 15 (Cambridge University Press, 1989).CrossRefGoogle Scholar
[5]Brin, M. G. and Thickstun, T. L.Open, irreducible 3-manifolds which are end one-movable. Topology 26 (1987), 211233.CrossRefGoogle Scholar
[6]Brin, M. G. and Thickstun, T. L. Three-manifolds which are end one-movable. Mem Amer. Math. Soc. no. 411 (1989).CrossRefGoogle Scholar
[7]Brown, E. M.Contractible 3-manifolds of finite genus at infinity. Trans. Amer. Math. Soc. 245 (1976), 503514.Google Scholar
[8]Cárdenas, M., Lasheras, F. F., Muro, F. and Quintero, A.Proper L-S category, fundamental pro-groups and 2-dimensional proper co-H-spaces. Topology Appl. 153 (2005), 580604.CrossRefGoogle Scholar
[9]Cárdenas, M., Lasheras, F. F. and Quintero, A.Minimal covers of open manifolds with half-spaces and the proper L-S category of product spaces. Bull. Belgian Math. Soc. 9 (2002), 419431.Google Scholar
[10]Cárdenas, M., Muro, F. and Quintero, A.The proper L-S category of Whitehead manifolds. Topology Appl. 153 (2005), 557579.CrossRefGoogle Scholar
[11]Cohen, M. M.A course in simple-homotopy theory. Graduate Texts in Mathematics 10 (Springer, 1973).CrossRefGoogle Scholar
[12]Cornea, O., Lupton, G., Oprea, J. and Tanré, D.Lusternik–Schnirelmann Category. Math. Surveys Monogr. 103 (Americam Mathematical Society, 2003).CrossRefGoogle Scholar
[13]Edwards, D. A. and Hastings, H. M.ČCech and Steenrod homotopy theories with applications to geometric topology. Lecture Notes 542 (Springer, 1976).CrossRefGoogle Scholar
[14]Extremiana-Aldana, J. I., Hernández-Paricio, L. J. and Rivas-Rodríguez, M. T.Postnikov factorizations at infinity. Topology Appl. 153 (2005), 370393.CrossRefGoogle Scholar
[15]Farrell, F., Taylor, L. and Wagoner, J.The Whitehead theorem in the proper homotopy. Comp. Math. 27 (1973), 123.Google Scholar
[16]Ferry, S. C.Stable compactifications of polyhedra. Michigan Math. J. 47 (2000), 287294.CrossRefGoogle Scholar
[17]Fox, R. H.On the Lusternik–Schnirelmann category. Ann. of Math. 42 (1941), 333370.CrossRefGoogle Scholar
[18]García-Calcines, J. M., García-Díaz, P. R. and Murillo, A.A Whitehead–Ganea approach for proper Lusternik–Schnirelmann category. Math. Proc. Camb. Phil. Soc. 142 (2007), 439457.CrossRefGoogle Scholar
[19]García-Calcines, J. M., García-Pinillos, P. R. and Hernández-Paricio, L. J.Closed simplicial model structures for exterior and proper homotopy theory. Appl. Categ. Structures 12 (2004), 225243.CrossRefGoogle Scholar
[20]García-Díaz, P. R. Caracterizaciones de Whitehead y Ganea de la categoría de Lusternik–Schnirelmann propia. PhD Thesis. Universidad de La Laguna (2007).Google Scholar
[21]Geoghegan, R.Topological methods in group theory. Graduate Texts in Mathematics 243 (Springer, 2008).CrossRefGoogle Scholar
[22]Gómez-Larrañaga, J. C. and González-Acuña, F.Lusternik–Schnirelmann category of 3-manifolds. Topology 31 (1992), 791800.CrossRefGoogle Scholar
[23]Hempel, J.3-manifolds. Ann. of Math. Stud. 86 (Princeton University Press, 1976).Google Scholar
[24]Jaco, W.Three-manifolds with fundamental group a free product. Bull. Amer. Math. Soc. 75 (1969), 972977.CrossRefGoogle Scholar
[25]Jaco, W.Lectures on three-manifold topology. CBMS Lecture Notes, vol. 43. (Amer. Math. Soc., 1980).CrossRefGoogle Scholar
[26]Magnus, W., Karrass, A. and Solitar, D.Combinatorial Group Theory (Wiley, 1966).Google Scholar
[27]Mardešsic, S. and Segal, J.Shape Theory (North-Holland, 1982).Google Scholar
[28]Massey, W. S.Homology and Cohomology Theory (Marcel Dekker, 1978).Google Scholar
[29]McMillan, D. R. Jr.Some contractible open 3-manifolds. Trans. Amer. Math. Soc. 102 (1962), 373382.CrossRefGoogle Scholar
[30]Myers, REnd sums of irreducible open 3-manifolds. Quart. J. Math. 50 (1999), 4970.CrossRefGoogle Scholar
[31]Oprea, J. and Rudyak, Y. B.Detecting elements and Lusternik–Schnirelmann category of 3-manifolds. Contemp. Math. 316, pp. 181191 (Amer. Math. Soc., 2002).CrossRefGoogle Scholar
[32]Rudyak, Y.B.On category weight and its applications. Topology 38 (1999), 3755.CrossRefGoogle Scholar
[33]Tinsley, F. C. and Wright, D. G.Some contractible open manifolds and coverings of manifolds in dimension three. Topology Appl. 77 (1997), 291301.CrossRefGoogle Scholar
[34]Whitehead, J. H. C.A certain open manifold whose group is unity. Quart. J. Math. 6 (1935), 268279.CrossRefGoogle Scholar