Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T18:54:33.479Z Has data issue: false hasContentIssue false

Deformations of asymptotically cylindrical G2-manifolds

Published online by Cambridge University Press:  01 September 2008

JOHANNES NORDSTRÖM*
Affiliation:
Department of Pure Mathematics and Mathematical Statistics, Cambridge University e-mail: [email protected]

Abstract

We prove that for a 7-dimensional manifold M with cylindrical ends the moduli space of exponentially asymptotically cylindrical torsion-free G2-structures is a smooth manifold (if non-empty), and study some of its local properties. We also show that the holonomy of the induced metric of an exponentially asymptotically cylindrical G2-manifold is exactly G2 if and only if the fundamental group π1(M) is finite and neither M nor any double cover of M is homeomorphic to a cylinder.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Atiyah, M. F., Patodi, V. K. and Singer, I. M.. Spectral asymmetry and Riemannian geometry, I. Math. Proc. Camb. Phil. Soc., 77 (1975), 97118.CrossRefGoogle Scholar
[2]Berger, M.. Sur les groupes d'holonomie homogène des variétés à connexion affines et des variétés riemanniennes. Bulletin de la Société Mathématique de France, 83 (1955), 279330.CrossRefGoogle Scholar
[3]Besse, A. L.. Einstein Manifolds. (Springer–Verlag, New York (1987).CrossRefGoogle Scholar
[4]Bott, R.. On a theorem of Lefschetz. Michigan Math. J., 6 (1959), 211216.CrossRefGoogle Scholar
[5]Bryant, R. L.. Some remarks on G 2-structures. arXiv:math.DG/0305124 v4, (2003).Google Scholar
[6]Chern, S. S.. On a generalization of Kähler geometry. In Algebraic Geometry and Topology, A Symposium in honor of S. Lefschetz, pages 103121. (Princeton University Press, 1957).CrossRefGoogle Scholar
[7]Ebin, D. G.. The manifold of Riemannian metrics. In Global Analysis, volume 15 of Proc. Symp. Pure. Math., pages 1140. (Amer. Math. Soc., Providence, 1970).CrossRefGoogle Scholar
[8]Gromov, M.. Groups of polynomial growth and expanding maps. Inst. Hautes tudes Sci. Publ. Math., 53 (1981), 5378.CrossRefGoogle Scholar
[9]Harvey, R. and Lawson, H. B.. Calibrated geometries. Acta Math., 148 (1982), 47157.CrossRefGoogle Scholar
[10]Hitchin, N. J.. The moduli space of special Lagrangian submanifolds. Ann. Scuola Sup. Norm. Pisa Sci. Fis. Mat., 25 (1997), 503515.Google Scholar
[11]Hitchin, N. J.. The geometry of three-forms in six and seven dimensions. Preprint arXiv:math.DG/0010054, 2000.CrossRefGoogle Scholar
[12]Joyce, D. D.. Compact Riemannian 7-manifolds with holonomy G2. I. J. Diff. Geom., 43 (1996), 291328.Google Scholar
[13]Joyce, D. D.. Compact Manifolds with Special Holonomy. OUP Mathematical Monographs series. (Oxford University Press, 2000).CrossRefGoogle Scholar
[14]Kovalev, A. G.. Twisted connected sums and special Riemannian holonomy. J. reine angew. Math., 565 (2003), 125160.Google Scholar
[15]Kovalev, A. G.. Ricci-flat deformations of asymptotically cylindrical Calabi-Yau manifolds. In Proceedings of Gökova Geometry-Topology Conference 2005, pages 140–156. (International Press, 2006).Google Scholar
[16]Kovalev, A. G.. Gluing theorems and special holonomy. In preparation.Google Scholar
[17]Lockhart, R. B.. Fredholm, Hodge and Liouville theorems on noncompact manifolds. Trans. Amer. Math. Soc., 301 (1987), 135.CrossRefGoogle Scholar
[18]Lockhart, R. B. and Mc Owen, R. C.. Elliptic differential operators on noncompact manifolds. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 12 (1985), 409447.Google Scholar
[19]Maz'ya, V. G. and Plamenevskiĭ, B. A.. Estimates in Lp and Hölder classes and the Miranda-Agmon maximum principle for solutions of elliptic boundary value problems in domains with singular points on the boundary. Math. Nachr., 81 (1978), 2582. English translation: Amer. Math. Soc. Transl. Ser. 2, 123:1–56, 1984.Google Scholar
[20]Melrose, R.. The Atiyah-Patodi-Singer index theorem. (AK Peters, Wellesley, MA, 1994).Google Scholar
[21]Milnor, J.. A note on curvature and fundamental group. J. Diff. Geom., 2 (1968), 17.Google Scholar
[22]Morrey, C. B.. Multiple integrals in the calculus of variations, volume 130 of Grundlehren der matematischen Wissenschaften. (Springer–Verlag, Berlin, 1966).Google Scholar
[23]Myers, S. B. and Steenrod, N. E.. The group of isometries of a riemannian manifold. Ann. Math., 40 (1939), 400416.CrossRefGoogle Scholar
[24]Salamon, S. M.. Riemannian Geometry and Holonomy Groups, volume 201 of Pitman Reseach Notes in Mathematics (Longman, Harlow, 1989).Google Scholar
[25]Salur, S.. Asymptotically cylindrical Ricci-flat manifolds. Proc. Amer. Math. Soc., 134 (2006), 30493056.CrossRefGoogle Scholar
[26]Tian, G.. Smoothness of the universal deformation space of compact Calabi-Yau manifolds and its Petersson-Weil metric. In Math. Aspects of String Theory, pages 629–646, (1987).CrossRefGoogle Scholar
[27]Todorov, A. N.. The Weil-Petersson geometry of the moduli space of SU(n ≥ 3) (Calabi-Yau) manifolds, I. Comm. Math. Phys., 126 (1989), 325346.CrossRefGoogle Scholar
[28]Yau, S.-T.. On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I. Comm. Pure Appl. Math, 31 (1978), 339411.CrossRefGoogle Scholar