No CrossRef data available.
Published online by Cambridge University Press: 24 October 2008
Let R be a noetherian local ring and x = x1, …, xn a system of parameters for R. If R is an equicharacteristic local ring then Hochster(3) proved there is a big Cohen-Macaulay module with respect to x, i.e. an R-module M, not necessarily noetherian, with x1, …, xn a regular sequence on M and M/(x) M ≠ 0. Such modules are important for the study of the homological conjectures in commutative algebra(3). Nevertheless, for mixed characteristic local rings virtually nothing is known about their existence.