Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T11:42:42.813Z Has data issue: false hasContentIssue false

Decomposable approximations and approximately finite dimensional C*-algebras

Published online by Cambridge University Press:  26 May 2016

JORGE CASTILLEJOS*
Affiliation:
School of Mathematics and Statistics, University of Glasgow, Glasgow G12 8QW. e-mail: [email protected]

Abstract

Nuclear C*-algebras having a system of completely positive approximations formed with convex combinations of a uniformly bounded number of order zero summands are shown to be approximately finite dimensional.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Blackadar, B. Operator Algebras Encyclopaedia of Mathematical Sciences vol. 122 (Springer-Verlag, Berlin, 2006). Theory of C*-algebras and von Neumann algebras, Operator Algebras and Non-commutative Geometry, III.CrossRefGoogle Scholar
[2] Bratteli, O. Inductive limits of finite dimensional C*-algebras. Trans. Amer. Math. Soc. 171 (1972), 195234.Google Scholar
[3] Busby, R. Double centralizers and extensions of C*-algebras. Trans. Amer. Math. Soc. 132 (1968), 7999.Google Scholar
[4] Choi, M. D. and Effros, E. Nuclear C*-algebras and the approximation property. Amer. J. Math. 100 (1) (1978), 6179.Google Scholar
[5] Elliott, G. and Toms, A. Regularity properties in the classification program for separable amenable C*-algebras. Bull. Amer. Math. Soc. 45 (2) (2008), 229245.CrossRefGoogle Scholar
[6] Farah, I. and Katsura, T. Nonseparable UHF algebras I: Dixmier's problem. Adv. Math. 225 (3) (2010), 13991430.Google Scholar
[7] Hirshberg, I., Kirchberg, E. and White, S. Decomposable approximations of nuclear C*-algebras. Adv. Math. 230 (3) (2012), 10291039.Google Scholar
[8] Kirchberg, E. C*-nuclearity implies CPAP. Math. Nachr. 76 (1977), 203212.CrossRefGoogle Scholar
[9] Kirchberg, E. and Winter, W. Covering dimension and quasidiagonality. Internat. J. Math. 15 (1) (2004), 6385.CrossRefGoogle Scholar
[10] Matui, H. and Sato, Y. Strict comparison and $\mathcal{Z}$ -absorption of nuclear C*-algebras. Acta Math. 209 (1) (2012), 179196.Google Scholar
[11] Matui, H. and Sato, Y. Decomposition rank of UHF-absorbing C*-algebras. Duke Math. J. 163 (14) (2014), 26872708.Google Scholar
[12] Robert, L. Nuclear dimension and n-comparison. Münster J. Math. 4 (2011), 6571.Google Scholar
[13] Sato, Y., White, S. and Winter, W. Nuclear dimension and $\mathcal{Z}$ -stability. Invent. Math. 202 (2) (2015), 893921.Google Scholar
[14] Tikuisis, A. and Winter, W. Decomposition rank of $\mathcal{Z}$ -stable C*-algebras. Anal. PDE. 7 (3) (2014), 673700.CrossRefGoogle Scholar
[15] Winter, W. Covering dimension for nuclear C*-algebras. J. Funct. Anal. 199 (2) (2003), 535556.CrossRefGoogle Scholar
[16] Winter, W. Decomposition rank and $\mathcal{Z}$ -stability. Invent. Math. 179 (2) (2010), 229301.Google Scholar
[17] Winter, W. Nuclear dimension and $\mathcal{Z}$ -stability of pure C*-algebras. Invent. Math. 187 (2) (2012), 259342.Google Scholar
[18] Winter, W. and Zacharias, J. Completely positive maps of order zero. Münster J. Math. 2 (2009), 311324.Google Scholar
[19] Winter, W. and Zacharias, J. The nuclear dimension of C*-algebras. Adv. Math. 224 (2) (2010), 461498.Google Scholar
[20] Wolff, M. Disjointness preserving operators on C*-algebras. Arch. Math. (Basel) 62 (3) (1994), 248253.Google Scholar