No CrossRef data available.
Published online by Cambridge University Press: 16 June 2009
For a real abelian number field F and for a prime p we study the relation between the p-parts of the class groups and of the quotients of global units modulo cyclotomic units along the cyclotomic p-extension of F. Assuming Greenberg's conjecture about the vanishing of the λ-invariant of the extension, a map between these groups has been constructed by several authors, and shown to be an isomorphism if p does not split in F. We focus in the split case, showing that there are, in general, non-trivial kernels and cokernels.