Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T07:34:43.015Z Has data issue: false hasContentIssue false

Cyclotomic units and class groups in p-extensions of real abelian fields

Published online by Cambridge University Press:  16 June 2009

FILIPPO ALBERTO EDOARDO NUCCIO*
Affiliation:
Università “La Sapienza”, P.le Aldo Moro, 5-00186, Rome, Italy. e-mail: [email protected]

Abstract

For a real abelian number field F and for a prime p we study the relation between the p-parts of the class groups and of the quotients of global units modulo cyclotomic units along the cyclotomic p-extension of F. Assuming Greenberg's conjecture about the vanishing of the λ-invariant of the extension, a map between these groups has been constructed by several authors, and shown to be an isomorphism if p does not split in F. We focus in the split case, showing that there are, in general, non-trivial kernels and cokernels.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[BNQD01]Belliard, J.-R. and Do, T. Nguyen QuangFormules de classes pour les corps abéliens réels. Ann. Inst. Fourier (Grenoble) 51 (2001), no. 4, 903937.CrossRefGoogle Scholar
[CF86]Cassels, J. W. S. and Fröhlich, A. (eds.). Algebraic number theory. (Academic Press Inc. [Harcourt Brace Jovanovich Publishers], 1986.) Reprint of the 1967 original.Google Scholar
[FW79]Ferrero, B. and Washington, L. C.The Iwasawa invariant μp vanishes for abelian number fields. Ann. of Math. (2) 109 (1979), no. 2, 377395.CrossRefGoogle Scholar
[Gil79a]Gillard, R.Remarques sur les unités cyclotomiques et les unités elliptiques. J. Number Theory 11 (1979), no. 1, 2148.CrossRefGoogle Scholar
[Gil79b]Gillard, R.Unités cyclotomiques, unités semi-locales et Zl-extensions, II. Ann. Inst. Fourier (Grenoble) 29 (1979), no. 4, viii, 115.CrossRefGoogle Scholar
[Gre76]Greenberg, R.On the Iwasawa invariants of totally real number fields. Amer. J. Math. 98 (1976), no. 1, 263284.CrossRefGoogle Scholar
[Gre77]Greenberg, R.On p-adic L-functions and cyclotomic fields, II. Nagoya Math. J. 67 (1977), 139158.CrossRefGoogle Scholar
[Iwa60]Iwasawa, K.On local cyclotomic fields. J. Math. Soc. Japan 12 (1960), 1621.CrossRefGoogle Scholar
[Iwa73]Iwasawa, K.On Zl-extensions of algebraic number fields. Ann. of Math. (2) 98 (1973), 246326.CrossRefGoogle Scholar
[KS95]Kraft, J. S. and Schoof, R.Computing Iwasawa modules of real quadratic number fields. Compositio Math. 97 (1995), no. 1-2, 135155, Special issue in honour of Frans Oort.Google Scholar
[Kuz96]Kuz′min, L. V.On formulas for the class number of real abelian fields. Izv. Ross. Akad. Nauk Ser. Mat. 60 (1996), no. 4, 43110.Google Scholar
[Lan90]Lang, S.Cyclotomic fields I and II, second ed., Graduate Texts in Mathematics, vol. 121. (Springer-Verlag, 1990) With an appendix by Karl Rubin.CrossRefGoogle Scholar
[NSW00]Neukirch, J., Schmidt, A. and Wingberg, K.Cohomology of number fields, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 323, (Springer-Verlag, 2000).Google Scholar
[Oza97]Ozaki, M.On the cyclotomic unit group and the ideal class group of a real abelian number field, I, II. J. Number Theory 64 (1997), no. 2, 211222, 223–232.CrossRefGoogle Scholar
[Sch88]Schoof, R.Cohomology of class groups of cyclotomic fields: an application to Morse-Smale diffeomorphisms. J. Pure Appl. Algebra 53 (1988), no. 1-2, 125137. MR MR955614 (89j:11111)CrossRefGoogle Scholar
[Sin81]Sinnott, W.On the Stickelberger ideal and the circular units of an abelian field. Invent. Math. 62 (1980/81), no. 2, 181234.CrossRefGoogle Scholar
[Was97]Washington, L. C.Introduction to cyclotomic fields, second ed. Graduate Texts in Mathematics, vol. 83 (Springer-Verlag, 1997).CrossRefGoogle Scholar