No CrossRef data available.
A continuous generalization of the transversal property
Published online by Cambridge University Press: 24 October 2008
Extract
A transversal for a set-system is a one-to-one choice function. A necessary and sufficient condition for the existence of a transversal in the case of finite sets was given by P. Hall (see [4, 3]). The corresponding condition for the case when countably many countable sets are given was conjectured by Nash-Williams and later proved by Damerell and Milner [2]. B. Bollobás and N. Varopoulos stated and proved the following measure theoretic counterpart of Hall's theorem: if (X, μ) is an atomless measure space, ℋ = {Hi: i∈I} is a family of measurable sets with finite measure, λi (i∈I) are non-negative real numbers, then we can choose a subset Ti ⊆ Hi with μ(Ti) = λi and μ(Ti ∩ Ti′) = 0 (i ≠ i′) if and only if μ({U Hi: iεJ}) ≥ Σ{λi: iεJ}: for every finite subset J of I. In this note we generalize this result giving a necessary and sufficient condition for the case when I is countable and X is the union of countably many sets of finite measure.
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 95 , Issue 1 , January 1984 , pp. 21 - 23
- Copyright
- Copyright © Cambridge Philosophical Society 1984