Continuity of automorphic representations
Published online by Cambridge University Press: 24 October 2008
Extract
Let ℛ be a von Neumann algebra, with predual ℛ*, acting on a Hilbert space ℋ; G a locally compact group with left Haar measure m, and α a representation of G on aut (ℛ), the group of all *-automorphisms of ℛ, i.e. α is a group homomorphism from G to aut (ℛ). We shall show that if ℋ is separable, then very weak measurability assumptions on the representation α produce strong continuity properties. This will be used to obtain results on the extension of representations from a C*-algebra to its weak closure, giving a much simpler proof of a result of Aarnes ((1), theorem 8, p. 31), and on continuity of tensor products of representations. The main result was suggested by the analogous theory concerning unitary representations of locally compact groups, and its proof employs ideas frequently used in that context. (See, for example, (5), theorem 22.20 (b), p. 347.)
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 74 , Issue 3 , November 1973 , pp. 461 - 465
- Copyright
- Copyright © Cambridge Philosophical Society 1973
References
REFERENCES
- 4
- Cited by