Published online by Cambridge University Press: 24 October 2008
A family ℳ of closed circular discs in the plane is called a saturated family or a saturated system of circles if (i) the infimum r of the radii of the discs in ℳ is positive and (ii) every closed disc of radius r in the plane intersects at least one disc in ℳ. For a saturated family ℳ, we denote by S the point-set union of the interiors of the members of ℳ and by S(l) the part of S inside the circular disc of radius l centred at the origin. We define the lower density ρℳ of the saturated family ℳ as
where V(S(l)) denotes the Lebesgue measure of the set S(l).