Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T13:30:07.107Z Has data issue: false hasContentIssue false

Complex strict and uniform convexity and hyponormal operators

Published online by Cambridge University Press:  24 October 2008

Kirsti Mattila
Affiliation:
Department of Mathematics, University of Stockholm, 11385 Stockholm

Abstract

Let X be a complex Banach space. We denote by X* the dual space of X and by B(X) the space of all bounded linear operators on X. The (spatial) numerical range of an operator TεB(X) is defined as the set

If V(T)ℝ, then T is called hermitian. More about numerical ranges may be found in [8] and [9].

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Akemann, C. and Russo, B.. Geometry of the unit sphere of a C*-algebra and its dual. Pacific J. Math. 32 (1970), 575585.CrossRefGoogle Scholar
[2]de Barra, G.. Some algebras of operators with closed convex numerical range. Proc. Roy. Irish Acad. Sect. A 72 (1972), 149154.Google Scholar
[3]Behrends, E.. Normal operators and multipliers on complex Banach spaces and a symmetry property of L1-predual spaces. Israel J. Math. 47 (1984), 2328.CrossRefGoogle Scholar
[4]Berberian, S. K.. Extensions of a theorem of Fuglede and Putnam. Proc. Amer. Math. Soc. 10 (1959), 175182.CrossRefGoogle Scholar
[5]Berkson, E.. Hermitian projections and orthogonality in Banach spaces. Proc. London Math. Soc. (3) 24 (1972), 101118.CrossRefGoogle Scholar
[6]Berkson, E., Fleming, R. J., Goldstein, J. A. and Jamison, J.. One-parameter groups of isometries on Cp. Rev. Roumaine Math. Pures Appl. 24 (1979), 863868.Google Scholar
[7]Berkson, E., Fleming, R. J. and Jamison, J.. Groups of isometries on certain ideals of Hilbert space operators. Math. Ann. 220 (1976), 151156.CrossRefGoogle Scholar
[8]Bonsall, F. F. and Duncan, J.. Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras. London Math. Soc. Lecture Note series 2 (Cambridge University Press, 1971).CrossRefGoogle Scholar
[9]Bonsall, F. F. and Duncan, J.. Numerical Ranges II. London Math. Soc. Lecture Note series 10 (Cambridge University Press, 1973).CrossRefGoogle Scholar
[10]Crabb, M. J. and Spain, P. G.. Commutators and normal operators. Glasgow Math. J. 18 (1977), 197198.CrossRefGoogle Scholar
[11]Davis, W. J., Garling, D. J. H. and Tomczak-Jaegermann, N.. The complex convexity of quasinormed linear spaces. Preprint.Google Scholar
[12]Dowson, H. R., Gillespie, T. A. and Spain, P. G.. A commutativity theorem for hermitian operators. Math. Ann. 220 (1976), 215217.CrossRefGoogle Scholar
[13]Garling, D. J. H. and Tomczak-Jaegermann, N.. The cotype and uniform convexity of unitary ideals. Israel J. Math. 45 (1983), 175197.CrossRefGoogle Scholar
[14]Globevnik, J.. On complex strict and uniform convexity. Proc. Amer. Math. Soc. 47 (1975), 175178.CrossRefGoogle Scholar
[15]Ho, Y.. Derivations on Hilbert-Schmidt operators. Tamkang J. Math. 6 (1975), 191195.Google Scholar
[16]Kyle, J.. Numerical ranges of derivations. Proc. Edinburgh Math. Soc. 21 (1978), 3339.CrossRefGoogle Scholar
[17]Legg, D., Scranton, B. and Ward, J.. Chebyshev subspaces in the space of compact operators. J. Approximation Theory 15 (1975), 326334.CrossRefGoogle Scholar
[18]Mattila, K.. Normal operators and proper boundary points of the spectra of operators on a Banach space. Ann. Acad. Sci. Fenn. Ser. A I, Math. Dissertationes 19 (1978).Google Scholar
[19]Mattila, K.. Complex strict and uniform convexity and hyponormal operators. Report no. 15 (1983), Dept. Math. Univ. of Stockholm.Google Scholar
[20]McCarthy, C. A.. cp. Israel J. Math. 5 (1967), 249271.CrossRefGoogle Scholar
[21]Moore, R. L., Rodgers, D. D. and Trent, T. T.. A note on intertwining M-hyponormal operators. Proc. Amer. Math. Soc. 83 (1981), 514516.Google Scholar
[22]Moore, R. L. and Trent, T. T.. A strict maximum modulus theorem for certain Banach spaces. Monatsh. Math. 92 (1981), 197201.CrossRefGoogle Scholar
[23]Schatten, R.. Norm, Ideals of Completely Continuous Operators (Springer-Verlag, 1960).CrossRefGoogle Scholar
[24]Shaw, S. Y.. On numerical ranges of generalized derivations and related properties. J. Austral. Math. Soc. 36 (1984), 134142.CrossRefGoogle Scholar
[25]Takahashi, K.. On the converse of Fuglede-Putnam theorem. Acta Sci. Math. (Szeged) 43 (1981), 123125.Google Scholar
[26]Thorp, E. and Whitley, R.. The strong maximum modulus theorem for analytic functions into a Banach space. Proc. Amer. Math. Soc. 18 (1967), 640646.CrossRefGoogle Scholar
[27]Williams, J. P.. Finite operators. Proc. Amer. Math. Soc. 26 (1970), 129136.CrossRefGoogle Scholar