Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T07:50:23.241Z Has data issue: false hasContentIssue false

A comparison of heisenberg's spectrum of turbulence with experiment

Published online by Cambridge University Press:  24 October 2008

Ian Proudman
Affiliation:
Trinity CollegeCambridge
G. K. Batchelor
Affiliation:
Trinity CollegeCambridge

Abstract

In this paper, the theoretical double and triple velocity correlation functions, f(r), g(r) and h(r), which correspond to Heisenberg's spectrum of isotropic turbulence, are obtained numerically for two Reynolds numbers. One set of these correlations is for the limiting case of infinite Reynolds number. In addition, a method is developed for deriving the approximate form of the double correlations for any Reynolds number, which is not too small, from the corresponding correlations for infinite Reynolds number. These theoretical correlations are then compared with the results of experiment.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1951

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Heisenberg, W.Proc. Roy. Soc. A, 195 (1949), 402.Google Scholar
(2)Batchelor, G. K.Proc. Roy. Soc. A, 195 (1949), 513.Google Scholar
(3)Chandrasekhar, S.Proc. Roy. Soc. A, 200 (1949), 20.Google Scholar
(4)Heisenberg, W.Z. Phys. 124 (1948), 628.CrossRefGoogle Scholar
(5)Batchelor, G. K. and Townsend, A. A.Proc. Roy. Soc. A, 193 (1948), 539.Google Scholar
(6)Bass, J.C.R. Acad. Sci., Paris, 228 (1949), 228.Google Scholar
(7)Townsend, A. A. and Stewart, R. W. (In publication.)Google Scholar
(8)Townsend, A. A.Proc. Cambridge Phil. Soc. 44 (1947), 560.CrossRefGoogle Scholar
(9)Stewart, R. W. (In publication.)Google Scholar
(10)Taylor, G. I.Proc. Roy. Soc. A, 151 (1935), part II, 444.Google Scholar
(11)Lee, T. D. (Unpublished.)Google Scholar
(12)Batchelor, G. K. and Townsend, A. A.Proc. Roy. Soc. A, 190 (1947), 534.Google Scholar
(13)von Kármán, T. and Howarth, L.Proc. Roy. Soc. A, 164 (1938), 192.Google Scholar