Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T14:32:56.099Z Has data issue: false hasContentIssue false

A compact space having the cardinality of the continuum with no convergent sequences

Published online by Cambridge University Press:  24 October 2008

V. V. Fedorčuk
Affiliation:
Mechanics and Mathematical Faculty; Moscow University, USSR

Extract

1. Introduction. All spaces in this paper are Hausdorff. We recall that a space X is sequentially compact, if every countable subset of X contains a convergent sequence. Let us consider the three statements:

(1) Every compact space of cardinality ≤ ʗ contains a point of countable character.

(2) Every compact space of cardinality ≤ ʗ is sequentially compact.

(3) Every infinite compact space of cardinality ≤ ʗ contains a convergent sequence.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Archangelskii, A.О мощности бикомпактов с первой аксиомой счетности. доклα∂ы AH CCCP 187, N5 (1969), 967970.Google Scholar
(2)Booth, D.Ultrafilters on a countable set. Ann. Math. Logic 2 (1970), 124.CrossRefGoogle Scholar
(3)Čech, E. and Pospíšil, B.Sur les espaces compacts. Publ. Fac. Sci, Univ. Masaryk Brno, 258 (1938), 37.Google Scholar
(4)Fedorč, V. O.бикомпактах снесовпадающими размерностями. доклα∂ы AH CCCP 182, N2 (1968), 275277.Google Scholar
(5)Hechler, S.Short complete nested sequences in and small maximal almost-disjoint families. General Topology and Its Application 2 (1972), 139149.CrossRefGoogle Scholar
(6)Jech, T.Lectures in set theory wtih particular emphasis on the method of forcing. Lecture Notes in Math. 217 (1971).Google Scholar
(7)Malychin, V. and Šapirovskii, B.Аксиома Мартина и свойства топологических пространств доклα∂ы AH CCCP 213, N3 (1973), 532535.Google Scholar
(8)Ulyanov, V. O.бикомпактных расшипениях счëтного характера иабсолютах. Mame ℳ. сборнuк 98, N2 (1975), 223254.Google Scholar