Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T19:25:21.339Z Has data issue: false hasContentIssue false

A combinatorial formula for homogeneous moments

Published online by Cambridge University Press:  12 February 2007

MICHAEL G. EASTWOOD
Affiliation:
School of Mathematical Sciences, University of Adelaide, SA 5005, Australia. e-mail: [email protected], [email protected]
NUNO M. ROMÃO
Affiliation:
School of Mathematical Sciences, University of Adelaide, SA 5005, Australia. e-mail: [email protected], [email protected]

Abstract

We establish a combinatorial formula for homogeneous moments and give some examples where it can be put to use. An application to the statistical mechanics of interacting gauged vortices is discussed.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Abramowitz, M. and Stegun, I. A.. Handbook of Mathematical Functions (National Bureau of Standards, 1965).Google Scholar
[2] Audin, M.. Spinning tops: A course in integrable systems. Camb. Stud. Adv. Math. 51 (1996).Google Scholar
[3] Baptista, J. M. and Manton, N. S.. The dynamics of vortices on S 2 near the Bradlow limit. J. Math. Phys. 44 (2003), 34953508, hep-th/0208001.CrossRefGoogle Scholar
[4] Manton, N. S.. Statistical mechanics of vortices. Nucl. Phys. B 400 [FS] (1993). 624632.CrossRefGoogle Scholar
[5] Manton, N. S. and Sutcliffe, P. M.. Topological solitons. Camb. Monogr. Math. Phys. (2004).Google Scholar
[6] Romão, N. M.. Quantum Chern–Simons vortices on a sphere. J. Math. Phys. 42 (2001), 34453469, hep-th/0010277.CrossRefGoogle Scholar
[7] Romão, N. M.. Gauged vortices in a backgroun d. J. Phys. A: Math. Gen. 38 (2005), 91279144, hep-th/0503014.CrossRefGoogle Scholar
[8] Samols, T. M.: Vortex scattering. Commun. Math. Phys. 145 (1992), 149180.CrossRefGoogle Scholar
[9] Slater, L. J.. Generalised Hypergeometric Functions (Cambridge University Press, 1966).Google Scholar
[10] Stuart, D.. Dynamics of Abelian Higgs vortices in the near Bogomolny regime. Commun. Math. Phys. 159 (1994), 5191.CrossRefGoogle Scholar
[11] Weyl, H.. The Classical Groups (Princeton University Press, 1939).Google Scholar