Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T18:24:30.285Z Has data issue: false hasContentIssue false

Characteristics of GWrSn

Published online by Cambridge University Press:  24 October 2008

A. G. Williams
Affiliation:
University of Warwick

Extract

The ‘characteristics’ of the wreath product GWrSn, where G is a finite group, are certain polynomials (to be defined in section 2) which are generating functions for the simple characters of GWrSn. Schur (8) first used characteristics of the symmetric group. Specht (9) defined characteristics for GWrSn and found a relation between the characteristics of GWrSn and those of Sn which determined the simple characters of GWrSn. The object of this paper is to describe the p-block structure of GWrSn in the case where p is not a factor of the order of G. We use the relationship between the characteristics of GWrSn and those of Sn, which we deduce from a knowledge of the simple characters of GWrSn (these can be determined, independently of Specht's work, by using Clifford theory).

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Brauer, R. and Robinson, G. De B.On a conjecture by Nakayama. Trans. Roy. Soc. Canada sect. III, (3), 41 (1947), 1125.Google Scholar
(2)Clifford, A. H.Representations induced in an invariant subgroup. Ann. of Math. 38 (1937), 533550.CrossRefGoogle Scholar
(3)Dornhoff, L.Group representation theory (part A) (Marcel Dekker, 1971).Google Scholar
(4)Farahat, H. K.On the blocks of characters of symmetric groups. Proc. London Math. Soc. 6 (1956), 501517.CrossRefGoogle Scholar
(5)Kerber, A.Representations of permutation groups I. Lecture Notes in Mathematics, 240 (Springer, 1971).CrossRefGoogle Scholar
(6)Littlewood, D. E.Modular representations of the symmetric group. Proc. Roy. Soc. Ser. A 209 (1951), 334353.Google Scholar
(7)Meier, N. and Tappe, J. Ein neuer Beweis der Nakayama-Vermutung über die Blockstruktur symmetrischer Gruppen. (To appear.)Google Scholar
(8)Schur, I. ÜOber eine Klasse von Matrizen, die sich einer gegebenen Matrix zuordnen lassen. Dissertation, Berlin (1901).Google Scholar
(9)Specht, W.Eine Verallgemeinerung der symmetrischen Gruppe. Schriften Berlin (1) (1932), 132.Google Scholar
(10)Tappe, J. Die Blockstruktur von Kranzprodukten der Form GS n und GC q Ph.D. dissertation, Technische Hochschule Aachen (1974).Google Scholar