Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T11:20:43.316Z Has data issue: false hasContentIssue false

Change of rings and characteristic classes

Published online by Cambridge University Press:  24 October 2008

Johannes Huebschmann
Affiliation:
Mathematisches Institut, Im Neuenheimer Feld 288, D-6900 Heidelberg, W. Germany

Abstract

We construct characteristic classes for the change of rings spectral sequences. These have their values in appropriate Ext groups and provide descriptions of the first non-zero differentials in the spectral sequences. We use these classes to do some calculations in the cohomology spectral sequence of an extension of a finite cyclic group by a finite cyclic group.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]André, M.. Le d 2 de la suite spectrale en cohomologie de groupes. C. R. Acad. Sci. Paris Sér. A, B 260 (1965), 26692671.Google Scholar
[2]André, M.. Homologie des extensions de groupes. C. R. Acad. Sci. Paris Sér. A, B 260 (1965), 38203823.Google Scholar
[3]Berikashvili, N. A.. The differentials of a spectral sequence. Bull. Acad. Sci. Georgian SSR 51 (1968), 914. (Russian. Georgian summary.)Google Scholar
[4]Cartan, H. and Eilenberg, S.. Homological Algebra (Princeton University Press, 1956).Google Scholar
[5]Charlap, L. S. and Vasquez, A. T.. The cohomology of group extensions. Trans. Amer. Math. Soc. 124 (1966), 2440.CrossRefGoogle Scholar
[6]Charlap, L. S. and Vasquez, A. T.. Characteristic classes for modules over groups. I. Trans. Amer. Math. Soc. 127 (1969), 533549.CrossRefGoogle Scholar
[7]Fox, R.. Free differential calculus. I. Derivation in the free group ring. Ann. of Math. (2) 57 (1953), 547560.CrossRefGoogle Scholar
[8]Hilton, P. J. and Stammbach, U.. On torsion in the differentials of the Lyndon–Hochschild–Serre spectral sequence. J. Algebra 29 (1974), 929.CrossRefGoogle Scholar
[9]Huebschmann, J.. Automorphisms of group extensions and differentials in the Lyndon–Hoehschild–Serre spectral sequence. J. Algebra 72 (1981), 296334.CrossRefGoogle Scholar
[10]Huebschmann, J.. Perturbation theory and free resolutions for nilpotent groups of class 2. J. Algebra (to appear).Google Scholar
[11]Huebschmann, J.. Cohomology of nilpotent groups of class 2. J. Algebra (to appear).Google Scholar
[12]Huebschmann, J.. The mod p cohomology rings of metacyclic groups. J. Pure Appl. Algebra (to appear).Google Scholar
[13]Huebschmann, J., Chern classes for metacyclic groups. (Preprint, 1988.)Google Scholar
[14]Huebschmann, J.. Cohomology of metacyclic groups. (Preprint, 1989.)CrossRefGoogle Scholar
[15]Hurewicz, W. and Fadell, E.. On the spectral sequence of a fibre space. Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 961964CrossRefGoogle ScholarPubMed
II. Proc. Nat. Acad. Sci. U.S.A. 43 (1957), 241245.CrossRefGoogle Scholar
[16]Legrand, A.. Homotopie des Espaces de Sections. Lecture Notes in Math. vol. 941 (Springer-Verlag, 1982).CrossRefGoogle Scholar
[17]MacLane, S.. Homology. Grundlehren math. Wissenschaften vol. 114 (Springer-Verlag, 1963).CrossRefGoogle Scholar
[18]Sah, C. H.. Cohomology of split group extensions. J. Algebra 29 (1974), 255302CrossRefGoogle Scholar
II. J. Algebra 45 (1977), 1768.CrossRefGoogle Scholar
[19]Shih, W.. Homologie des Espaces Fibrés. Inst. Hautes Études Sci. Publ. Math. no. 13 (Presses Univ., 1962).Google Scholar
[20]Wall, C. T. C.. Resolutions for extensions of groups. Proc. Cambridge Philos. Soc. 57 (1961), 251255.CrossRefGoogle Scholar
[21]Zassenhaus, H.. Lehrbuch der Gruppentheorie (Teubner-Verlag, 1937: English translation. Chelsea, 1949).Google Scholar