Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T08:46:45.987Z Has data issue: false hasContentIssue false

Centralisers of Dehn twist automorphisms of free groups

Published online by Cambridge University Press:  08 May 2015

MORITZ RODENHAUSEN
Affiliation:
Mathematisches Institut, Endenicher Allee 60, 53115, Bonn, Germany. e-mail: [email protected]
RICHARD D. WADE
Affiliation:
Department of Mathematics, University of Utah, Salt Lake City, 84113, U.S.A. e-mail: [email protected]

Abstract

We refine Cohen and Lustig's description of centralisers of Dehn twists of free groups. We show that the centraliser of a Dehn twist of a free group has a subgroup of finite index that has a finite classifying space. We describe an algorithm to find a presentation of the centraliser. We use this algorithm to give an explicit presentation for the centraliser of a Nielsen automorphism in Aut(Fn). This gives restrictions to actions of Aut(Fn) on CAT(0) spaces.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Bass, H. Covering theory for graphs of groups. J. Pure Appl. Algebra 89 (1993), 347.Google Scholar
[2] Bass, H. and Jiang, R. Automorphism groups of tree actions and of graphs of groups. J. Pure Appl. Algebra 112 (1996), 109155.Google Scholar
[3] Bestvina, M., Feighn, M. and Handel, M. Laminations, trees and irreducible automorphisms of free groups. Geom. Funct. Anal. 7 (2) (1997), 215244.Google Scholar
[4] Bridson, M. R. Semisimple actions of mapping class groups on CAT(0) spaces. London Math. Soc. Lecture Note Ser. 368 (2010), 114.Google Scholar
[5] Bridson, M. R. The rhombic dodecahedron and semisimple actions of Aut(Fn ) on CAT(0) spaces. Fund. Math. 214 (1) (2011), 1325.Google Scholar
[6] Bridson, M. R. and Haefliger, A. Metric Spaces of Non-Positive Curvature (Springer-Verlag, Berlin, 1999).Google Scholar
[7] Cohen, M. M. and Lustig, M. Very small group actions on R-trees and Dehn twist automorphisms. Topology 34 (3) (1995), 575617.Google Scholar
[8] Cohen, M. M. and Lustig, M. The conjugacy problem for Dehn twist automorphisms of free groups. Comment. Math. Helv. 74 (2) (1999), 179200.Google Scholar
[9] Culler, M. and Vogtmann, K. Moduli of graphs and automorphisms of free groups. Invent. Math. 84 (1986), 91119.Google Scholar
[10] Feighn, M. and Handel, M. Abelian subgroups of Out(Fn ). Geom. Topol. 13 (3) (2009), 16571727.Google Scholar
[11] Geoghegan, R. Topological Methods in Group Theory (Springer, New York, 2008).Google Scholar
[12] Guirardel, V. and Levitt, G. Splittings and automorphisms of relatively hyperbolic groups. arXiv:1212.1434 (2012).Google Scholar
[13] Guirardel, V. and Levitt, G. McCool groups of toral relatively hyperbolic groups. arXiv:1408.0418 (2014).Google Scholar
[14] Ivanov, N. V. Subgroups of Teichmüller modular groups. Trans. Math. Monogr. 115 (American Mathematical Society, 1992).Google Scholar
[15] Jensen, C. A. and Wahl, N. Automorphisms of free groups with boundaries. Alg. Geom. Topol. 4 (2004), 543569.Google Scholar
[16] Krstic, S., Lustig, M. and Vogtmann, K. An equivariant Whitehead algorithm and conjugacy for roots of Dehn twist automorphisms. Proc. Math. Soc. (2) 44 (1) (2001), 117141.Google Scholar
[17] Levitt, G. Automorphisms of hyperbolic groups and graphs of groups. Geom. Dedicata 114 (2005), 4970.Google Scholar
[18] Levitt, G. Counting growth types of automorphisms of free groups. Geom. Funct. Anal. 19 (4) (2009), 11191146.Google Scholar
[19] Lyndon, R. C. and Schupp, P. E. Combinatorial Group Theory. (Springer-Verlag, Berlin-New York, 1977).Google Scholar
[20] McCool, J. A presentation for the automorphism group of a free group of finite rank. J. London Math. Soc. 8 (2) (1974), 259266.Google Scholar
[21] McCool, J. Some finitely presented subgroups of the automorphism group of a free group. J. Algebra 35 (1975), 205213.Google Scholar
[22] Neumann, B. H. Die Automorphismengruppe der freien Gruppen. Math. Ann. 107 (1932), 367386.Google Scholar
[23] Nielsen, J. Die Isomorphismengruppe der freien Gruppen. Math. Ann. 91 (1924), 169209.Google Scholar
[24] Rodenhausen, M. Centralisers of polynomially growing automorphisms of free groups. PhD thesis. Universität Bonn (2013).Google Scholar
[25] Serre, J-P Trees (Springer, New York, 1980).Google Scholar