Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T02:12:15.515Z Has data issue: false hasContentIssue false

Capillary-gravity waves over a sloping beach

Published online by Cambridge University Press:  24 October 2008

D. A. Allwood
Affiliation:
Institute of Applied Mathematics, University of British Columbia

Abstract

It is shown how the solution for the velocity potential may be determined when the effect of surface tension is included in the linearized theory of surface waves over a sloping beach. In particular, two independent standing wave solutions are found, both of which have finite amplitude at the shoreline. The results agree with those of previous writers when the surface tension force tends to zero.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Brillouet, G.Publ. Sci. Tech. Ministre de l'air (Paris), 329 (1957).Google Scholar
(2)Lewy, H.Bull. Amer. Math. Soc. 52 (1946), 737775.CrossRefGoogle Scholar
(3)Mondal, M. M. Surface tension effects in the theory of gravity waves. Ph.D. Thesis, University of Surrey (1969).Google Scholar
(4)Packham, B. A.Proc. Cambridge Philos. Soc. 64 (1968), 827832.CrossRefGoogle Scholar
(5)Peters, A. S.Comm. Pure Appl. Math. 5 (1952), 87108.CrossRefGoogle Scholar
(6)Roseau, M.Comm. Pure Appl. Math. 11 (1958), 433493.CrossRefGoogle Scholar
(7)Stoker, J. J.Quart. Appl. Math. 5 (1947), 154.CrossRefGoogle Scholar
(8)Williams, W. E.Proc. Roy. Soc. A252 (1959), 376393.Google Scholar
(9)Williams, W. E.Proc. Cambridge Philos. Soc. 57 (1961), 160165.CrossRefGoogle Scholar
(10)Wehausen, J. V. and Laitone, E. V.Surface waves. Handbuch der Physik 9 (1960).Google Scholar