Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T14:59:26.568Z Has data issue: false hasContentIssue false

Bounds for the characteristic exponents of linear systems

Published online by Cambridge University Press:  24 October 2008

R. A. Smith
Affiliation:
Mathematics Department, University of Durham

Extract

For an n-vector x = (xi) and n × n matrix A = (aij) with complex elements, let |x|2 = Σi|xi|2,|A|2 = ΣiΣj|aij|2. Also, M(A), m(A) denoteℜλ1,ℜλn, respectively, where λ1,…,λA are the eigenvalues of A arranged so that ℜλ1 ≥ … ≥ ℜλn. Throughout this paper A(t) denotes a matrix whose elements aij(t) are complex valued Lebesgue integrable functions of t in (0, T) for all T > 0. Then M(A(t)), m(A(t)) are also Lebesgue integrable in (0, T) for all T > 0. The characteristic exponent μ of a non-zero solution x(t) of the n × n system of differential equations

can be defined, following Perron ((12)), as

where ℒ denotes lim sup as t → + ∞. When |A(t)| is bounded in (0,∞), μ is finite; in other cases it could be ± ∞.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1965

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) Bhatia, N. P. Z. Angew. Math. Mech. 41 (1961), 134136.CrossRefGoogle Scholar
(2) Gantmacher, F. R. The theory of matrices, vol. II (Chelsea; New York, 1959).Google Scholar
(3) Hale, J. K. Contributions to differential equations, 1 (1963), 401410.Google Scholar
(4) Hale, J. K. and Stokes, A. P. J. Math. Anal. Appl. 3 (1961), 5069.CrossRefGoogle Scholar
(5) Harasahal, V. Akad. Nauk Kazah. SSR. Trudy Sekt. Mat. Meh. 1 (1958), 147150.Google Scholar
(6) Langenhop, C. E. Trans. American Math. Soc. 97 (1960), 317326.CrossRefGoogle Scholar
(7) Lettenmeyer, F. Bayer. Akad. Wiss. Math.-Natur. Kl. S.-B. (1929), 201252.Google Scholar
(8) Yue-Sheng., Li Chinese Math. 3 (1963), 3441. (English translation of Acta Math. Sinica 12 (1962), 32–39.)Google Scholar
(9) Lillo, J. C. Math. Z. 73 (1960), 4558.CrossRefGoogle Scholar
(10) Markus, L. Math. Z. 62 (1955), 310319.CrossRefGoogle Scholar
(11) Mirsky, L. An introduction to linear algebra (Oxford, 1955).Google Scholar
(12) Perron, O. Math. Z. 31 (1929), 748766.CrossRefGoogle Scholar
(13) Rosenbrock, H. H. J. Electronics Control (1) 15 (1963), 7380.CrossRefGoogle Scholar
(14) Ważewski, T. Studia Math. 10 (1948), 4859.CrossRefGoogle Scholar