Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-27T08:52:38.339Z Has data issue: false hasContentIssue false

Beurling's projection theorem via one-dimensional Brownian motion

Published online by Cambridge University Press:  24 October 2008

Wendelin Werner
Affiliation:
C.N.R.S. and University of Cambridge Statistical Laboratory, D.P.M.M.S., 16 Mill Lane, Cambridge CB2 1SB

Abstract

We prove some elementary intuitive estimates on moving boundaries hitting times by one-dimensional Brownian motion (in ℝ and on the circle). These results give an alternative approach to Beurling's radial projection theorem on harmonic measure in a disc.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Ahlfors, L. V.. Conformal invariants, topics in geometric function theory (McGraw-Hill, 1973).Google Scholar
[2]Beurling, A.. Etudes sur un problème de majoration (Thèse; Uppsala, 1933).Google Scholar
[3]Burdzy, K.. Geometric properties of two-dimensional Brownian paths. Probab. Th. rel. Fields 81 (1989), 485505.CrossRefGoogle Scholar
[4]Burdzy, K. and Lawler, G. L.. Non-intersection exponents for Brownian paths. Part II: Estimates and application to a random fractal. Ann. Probab. 18 (1990), 9811009.CrossRefGoogle Scholar
[5]Carne, T. K.. Brownian motion and Nevanlinna Theory. Proc. London Math. Soc. (3) 52 (1986), 349368.CrossRefGoogle Scholar
[6]Davies, B.. Brownian motion and analytic functions. Ann. Probab. 7 (1979), 913932.Google Scholar
[7]Duplantier, B., Lawler, G. F., Le Gall, J. F. and Lyons, T. J.. The geometry of the Brownian curve, in: Probability's et Analyse stochastique, Tables rondes de St-Chéron Janvier 1992. Bull. Sc. Math. (2) 117 (1993).Google Scholar
[8]Hardy, G. H., Littlewood, J. E. and Pólya, G.. Inequalities (Cambridge University Press, 1934).Google Scholar
[9]Itô, K. and Mckean, H. P.. Diffusion processes and their sample paths (Springer, 1965).Google Scholar
[10]Lai, T. Y. and Wijsman, R. A.. First exit time of a random walk from the boundary f(n) ± cg(n) with applications. Ann. Probab. 7 (1979), 672692.CrossRefGoogle Scholar
[11]Lawler, G. L.. Intersection of random walks (Birkhäuser, 1991).Google Scholar
[12]Lyons, T. J.. A synthetic proof of Makarov's law of the iterated logarithm. Bull. LondonMath. Soc. 22 (1990), 159162.CrossRefGoogle Scholar
[13]Makarov, N. G.. Probability Methods in the theory of conformal mappings. Algebra i Analiz 1 (1989), 359 (Russian)Google Scholar
[13]Makarov, N. G. English transl.: Leningrad Math. J. 1 (1990), 156.Google Scholar
[14]Nevanlinna, R.. Eindeutige analytische Funktionen (Springer, 1936).CrossRefGoogle Scholar
[15]Oksendal, B.. Projection estimates for harmonic measure. Ark. Math. 21 (1983), 191203.CrossRefGoogle Scholar
[16]Oksendal, B.. A stochastic proof of an extension of a Theorem of Rado. Proc. Edinburgh Math. Soc. 26 (1983), 333336.CrossRefGoogle Scholar
[17]Port, S. C. and Stone, C. J.. Brownian motion and classical potential theory (Academic Press, 1979).Google Scholar
[18]Riesz, F.. Sur une inégalité intégrate. J. London Math. Soc. 5 (1930), 162168.CrossRefGoogle Scholar