Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-26T08:39:15.325Z Has data issue: false hasContentIssue false

Bessel function Jν(z) of complex order and its zeros

Published online by Cambridge University Press:  24 October 2008

Laurence S. Hall
Affiliation:
Lawrence Radiation Laboratory, University of California, Livermore, California

Abstract

Methods are developed for the computation of the complex zeros of (½z)−νJν(z) when the index ν is an arbitrary complex number. These methods, which do not require an explicit knowledge of the Jv(z), are susceptible to rapid numerical evaluation on a computer. Beyond the interest in the zeros in their own right, these methods now make feasible the use of the infinite product representation of Jν(z) for the rapid computation of Bessel functions of complex order.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1967

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Airey, J. R.Phil. Mag. (6), 41, 200.CrossRefGoogle Scholar
(2)Davis, H. T.The summation of series (Principia Press of Trinity University, San Antonio, Texas, 1962), p. 111.Google Scholar
(3)Euler, L.Acta Acad. Petrop. v. pars 1 (1781), [1784], p. 170.Google Scholar
(4)Fletcher, A., Miller, J. C. P., Rosenhead, L. and Comrie, L. J.An Index of Mathematical Tables, 2nd ed. (Blackwell Scientific Publications, Ltd., Oxford, 1962), pp. 402413, 445.Google Scholar
(5)Girard, , Calcul des dérivations (Arbogast, 1800), p. 56.Google Scholar
(6)Hall, L. S., Heckrotte, W. and Kammash, T.Phys. Rev. (1965), 139, A1117.Google Scholar
(7)Jahnke, E., Emde, F. and Lösch, F.Tables of higher functions, 6th ed.; revised (McGraw-Hill Book Company, New York, 1960), pp. 133, 191–197, 230–231 (tables and graphs) and 309–312 (bibliography).Google Scholar
(8)Olver, F. W. J. (editor). The Royal Society Mathematical Tables, vol. 7, part III, Bessel functions—zeros and associated values (Cambridge University Press, 1960).Google Scholar
(9)Olver, F. W. J.Philos. Trans. Roy. Soc, London, Ser. A 247 (1954), 307, 328.Google Scholar
(10)Strutt, J. W., Baron, Rayleigh.Scientific papers, vol. i (Cambridge University Press, 1899), p. 190. (Originally published in Proc. London Math. Soc. v. (1874), p. 119.)Google Scholar
(11)Waring, . Meditationes Analytical (Cambridge, 1776), p. 311.Google Scholar
(12)Watson, G. N.Theory of Bessel Functions (2nd ed.; Cambridge University Press, 1962), p. 498.Google Scholar
(13)Cohen, D. S. J.Math. Phys. 43 (1964), 133.Google Scholar