Published online by Cambridge University Press: 02 February 2016
Let A be a local complete intersection ring. Let M, N be two finitely generated A-modules and I an ideal of A. We prove that
$$\bigcup_{i\geqslant 0}\bigcup_{n \geqslant 0}{\rm Ass}_A\left({\rm Ext}_A^i(M,N/I^n N)\right)$$
$$\begin{linenomath}\begin{subeqnarray*}
{\rm Ass}_A\left({\rm Ext}_A^{2i}(M,N/I^nN)\right) &=& {\rm Ass}_A\left({\rm Ext}_A^{2 i_0}(M,N/I^{n_0}N)\right), \\
{\rm Ass}_A\left({\rm Ext}_A^{2i+1}(M,N/I^nN)\right) &=& {\rm Ass}_A\left({\rm Ext}_A^{2 i_0 + 1}(M,N/I^{n_0}N)\right).
\end{subeqnarray*}\end{linenomath}$$
Please note a has been issued for this article.