Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T18:19:44.275Z Has data issue: false hasContentIssue false

Asymptotic distributions of weighted compound Poisson bridges

Published online by Cambridge University Press:  24 October 2008

Barbara Szyszkowicz
Affiliation:
Department of Mathematics and Statistics, Carleton University, Ottawa, Ontario, CanadaK1S 5B6

Extract

Let S(N(t)) be defined by

where {N(t), t ≥ 0} is a Poisson process with intensity parameter 1/μ > 0 and {Xi i ≥ 1} is a family of independent random variables which are also independent of {N(t), t ≥ 0}.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Billingsley, P.. Convergence of Probability Measures (Wiley 1968).Google Scholar
[2]Chibisov, D.. Some theorems on the limiting behaviour of empirical distribution functions. Selected Transl. Math. Statist. Probab. 6 (1964), 147156.Google Scholar
[3]Csörgő, M.. Quantile Processes with Statistical Applications (SIAM 1983).CrossRefGoogle Scholar
[4]Csörgő, M., Csörgő, S. and Horváth, L.. An Asymptotic Theory for Empirical Reliability and Concentration Processes. Lecture Notes in Statist, vol. 33 (Springer-Verlag 1986).CrossRefGoogle Scholar
[5]Csörgő, M., Csörgő, S., Horváth, L. and Mason, D.. Weighted empirical and quantile processes. Ann. Probab. 14 (1986), 3185.CrossRefGoogle Scholar
[6]Csörgő, M., Deheuvels, P. and Horváth, L.. An approximation of stopped sums with applications in queueing theory. Adv. in Appl. Probab. 19 (1987), 674690.CrossRefGoogle Scholar
[7]Csörgő, M. and Horváth, L.. Asymptotic distributions of pontograms. Math. Proc. Cambridge Philos. Soc. 101 (1987), 131139.CrossRefGoogle Scholar
[8]Csörgő, M. and Horváth, L.. On the distributions of L p norms of weighted uniform empirical and quantile processes. Ann. Probab. 16 (1988), 142161.CrossRefGoogle Scholar
[9]Csörgő, M. and Horváth, L.. Weighted Approximations in Probability and Statistics, book in preparation.Google Scholar
[10]Csörgő, M., Horváth, L. and Shao, Q. M.. Random integrals and summability of partial sums. Stochastic Process. Appl., to appear.Google Scholar
[11]Csörgő, M. and Révész, P.. Strong Approximations in Probability and Statistics (Academic Press 1981).Google Scholar
[12]Csörgő, M., Shao, Q. M. and Szyszkowicz, B.. A note on local and global functions of a Wiener process and some Rényi-type statistics. Studia Sci. Math. Hungar. 26 (1991), in press.Google Scholar
[13]Darling, D. A. and Erdős, P.. A limit theorem for the maximum of normalized sums of independent random variables. Duke Math. J. 23 (1956), 143145.CrossRefGoogle Scholar
[14]Eastwood, V. R.. Some recent developments concerning asymptotic distributions of pontograms. Math. Proc. Cambridge Philos. Soc. 108 (1990), 559567.CrossRefGoogle Scholar
[15]Greenwood, P. E. and Shiryayev, A. N.. Contiguity and the Statistical Invariance Principle (Gordon and Breach, 1985).Google Scholar
[16]Hájek, J. and Šidák, Z.. Theory of Rank Tests (Academic Press 1967).Google Scholar
[17]Ito, K. and MoKean, H. P. Jr. Diffusion Processes and their Sample Paths (Springer-Verlag 1965).Google Scholar
[18]Kendall, D. G. and Kendall, W. S.. Alignments in two-dimensional random sets of points. Adv. in Appl. Probab. 12 (1980), 380424.CrossRefGoogle Scholar
[19]Khmaladze, E. V. and Parjanadze, A. M.. Functional limit theorems for linear statistics of sequential ranks. Probab. Theory Related Fields 73 (1986), 322334.CrossRefGoogle Scholar
[20]Le Cam, L.. Locally asymptotically normal families of distributions. Univ. California Publ. Statist.. 3 (1960), 3798.Google Scholar
[21]Le Cam, L.. Asymptotic Methods in Statistical Decision Theory (Springer-Verlag, 1986).CrossRefGoogle Scholar
[22]O'Reilly, N.. On the weak convergence of empirical processes in sup-norm metrics. Ann. Probab. 2 (1974), 642651.CrossRefGoogle Scholar
[23]Roussas, G. G.. Contiguity of Probability Measures: Some Applications in Statistics (Cambridge University Press 1972).CrossRefGoogle Scholar
[24]Szyszkowicz, B.. Changepoint problem and contiguous alternatives. Statist. Probab. Lett. 11 (1991), 299308.CrossRefGoogle Scholar
[25]Szyszkowicz, B.. Asymptotic distributions of weighted pontograms under contiguous alternatives. Math. Proc. Cambridge Philos. Soc. 112 (1992), 431447.CrossRefGoogle Scholar